Presentation is loading. Please wait.

Presentation is loading. Please wait.

Curriculum Learning for Latent Structural SVM

Similar presentations


Presentation on theme: "Curriculum Learning for Latent Structural SVM"— Presentation transcript:

1 Curriculum Learning for Latent Structural SVM
(under submission) M. Pawan Kumar Benjamin Packer Daphne Koller

2 Aim Input x Output y  Y Hidden Variable h  H
To learn accurate parameters for latent structural SVM Input x Output y  Y Hidden Variable h  H “Deer” Y = {“Bison”, “Deer”, ”Elephant”, “Giraffe”, “Llama”, “Rhino” }

3 Aim (y*,h*) = maxyY,hH wT(x,y,h) Feature (x,y,h) (HOG, BoW)
To learn accurate parameters for latent structural SVM Feature (x,y,h) (HOG, BoW) Parameters w (y*,h*) = maxyY,hH wT(x,y,h)

4 Motivation FAILURE … BAD LOCAL MINIMUM Real Numbers Imaginary Numbers
Math is for losers !! Real Numbers Imaginary Numbers eiπ+1 = 0 FAILURE … BAD LOCAL MINIMUM

5 Motivation SUCCESS … GOOD LOCAL MINIMUM Real Numbers Imaginary Numbers
Euler was a Genius!! Real Numbers Imaginary Numbers eiπ+1 = 0 SUCCESS … GOOD LOCAL MINIMUM Curriculum Learning: Bengio et al, ICML 2009

6 Motivation Simultaneously estimate easiness and parameters
Start with “easy” examples, then consider “hard” ones Simultaneously estimate easiness and parameters Easiness is property of data sets, not single instances Easy vs. Hard Expensive Easy for human  Easy for machine

7 Outline Latent Structural SVM Concave-Convex Procedure
Curriculum Learning Experiments

8 Latent Structural SVM Training samples xi Ground-truth label yi
Felzenszwalb et al, 2008, Yu and Joachims, 2009 Training samples xi Ground-truth label yi Loss Function (yi, yi(w), hi(w))

9 (yi(w),hi(w)) = maxyY,hH wT(x,y,h)
Latent Structural SVM (yi(w),hi(w)) = maxyY,hH wT(x,y,h) min ||w||2 + C∑i(yi, yi(w), hi(w)) Non-convex Objective Minimize an upper bound

10 Latent Structural SVM (yi(w),hi(w)) = maxyY,hH wT(x,y,h)
min ||w||2 + C∑i i maxhiwT(xi,yi,hi) - wT(xi,y,h) ≥ (yi, y, h) - i Still non-convex Difference of convex CCCP Algorithm - converges to a local minimum

11 Outline Latent Structural SVM Concave-Convex Procedure
Curriculum Learning Experiments

12 Concave-Convex Procedure
Start with an initial estimate w0 Update hi = maxhH wtT(xi,yi,h) Update wt+1 by solving a convex problem min ||w||2 + C∑i i wT(xi,yi,hi) - wT(xi,y,h) ≥ (yi, y, h) - i 12

13 Concave-Convex Procedure
Looks at all samples simultaneously “Hard” samples will cause confusion Start with “easy” samples, then consider “hard” ones 13

14 Outline Latent Structural SVM Concave-Convex Procedure
Curriculum Learning Experiments

15 Curriculum Learning REMINDER
Simultaneously estimate easiness and parameters Easiness is property of data sets, not single instances 15

16 wT(xi,yi,hi) - wT(xi,y,h)
Curriculum Learning Start with an initial estimate w0 Update hi = maxhH wtT(xi,yi,h) Update wt+1 by solving a convex problem min ||w||2 + C∑i i wT(xi,yi,hi) - wT(xi,y,h) ≥ (yi, y, h) - i 16

17 wT(xi,yi,hi) - wT(xi,y,h)
Curriculum Learning min ||w||2 + C∑i i wT(xi,yi,hi) - wT(xi,y,h) ≥ (yi, y, h) - i 17

18 wT(xi,yi,hi) - wT(xi,y,h)
Curriculum Learning vi  {0,1} min ||w||2 + C∑i vii wT(xi,yi,hi) - wT(xi,y,h) ≥ (yi, y, h) - i Trivial Solution 18

19 Curriculum Learning min ||w||2 + C∑i vii - ∑ivi/K
wT(xi,yi,hi) - wT(xi,y,h) ≥ (yi, y, h) - i Large K Medium K Small K 19

20 Curriculum Learning min ||w||2 + C∑i vii - ∑ivi/K
Biconvex Problem vi  [0,1] min ||w||2 + C∑i vii - ∑ivi/K wT(xi,yi,hi) - wT(xi,y,h) ≥ (yi, y, h) - i Large K Medium K Small K 20

21 Curriculum Learning hi = maxhH wtT(xi,yi,h)
Start with an initial estimate w0 hi = maxhH wtT(xi,yi,h) Update Update wt+1 by solving a convex problem min ||w||2 + C∑i vii - ∑i vi/K wT(xi,yi,hi) - wT(xi,y,h) ≥ (yi, y, h) - i Decrease K  K/ 21

22 Outline Latent Structural SVM Concave-Convex Procedure
Curriculum Learning Experiments

23 Object Detection Input x - Image Output y  Y Latent h - Box
 - 0/1 Loss Y = {“Bison”, “Deer”, ”Elephant”, “Giraffe”, “Llama”, “Rhino” } Feature (x,y,h) - HOG

24 Object Detection Mammals Dataset 271 images, 6 classes
90/10 train/test split 5 folds

25 Object Detection CCCP Curriculum

26 Object Detection CCCP Curriculum

27 Object Detection CCCP Curriculum

28 Object Detection CCCP Curriculum

29 Object Detection Objective value Test error

30 Handwritten Digit Recognition
Input x - Image Output y  Y Latent h - Rotation  - 0/1 Loss MNIST Dataset Y = {0, 1, … , 9} Feature (x,y,h) - PCA + Projection

31 Handwritten Digit Recognition
- Significant Difference

32 Handwritten Digit Recognition
- Significant Difference

33 Handwritten Digit Recognition
- Significant Difference

34 Handwritten Digit Recognition
- Significant Difference

35 Feature (x,y,h) - Ng and Cardie, ACL 2002
Motif Finding Input x - DNA Sequence Output y  Y Y = {0, 1} Latent h - Motif Location  - 0/1 Loss Feature (x,y,h) - Ng and Cardie, ACL 2002

36 Motif Finding UniProbe Dataset 40,000 sequences 50/50 train/test split
5 folds

37 Motif Finding Average Hamming Distance of Inferred Motifs

38 Motif Finding Objective Value

39 Motif Finding Test Error

40 Noun Phrase Coreference
Input x - Nouns Output y - Clustering Latent h - Spanning Forest over Nouns Feature (x,y,h) - Yu and Joachims, ICML 2009

41 Noun Phrase Coreference
MUC6 Dataset 60 documents 50/50 train/test split 1 predefined fold

42 Noun Phrase Coreference
MITRE Loss Pairwise Loss - Significant Improvement - Significant Decrement

43 Noun Phrase Coreference
MITRE Loss Pairwise Loss

44 Noun Phrase Coreference
MITRE Loss Pairwise Loss

45 Summary Automatic Curriculum Learning Concave-Biconvex Procedure
Generalization to other Latent models Expectation-Maximization E-step remains the same M-step includes indicator variables vi


Download ppt "Curriculum Learning for Latent Structural SVM"

Similar presentations


Ads by Google