Presentation is loading. Please wait.

Presentation is loading. Please wait.

CS 691 Computational Photography Instructor: Gianfranco Doretto Image Warping.

Similar presentations


Presentation on theme: "CS 691 Computational Photography Instructor: Gianfranco Doretto Image Warping."— Presentation transcript:

1 CS 691 Computational Photography Instructor: Gianfranco Doretto Image Warping

2 Image Transformations Image Filtering: change range of image g(x) = T(f(x)) f x T f x f x T f x Image Warping: change domain of image g(x) = f(T(x))

3 Image Transformations TT f f g g Image Filtering: change range of image g(x) = T(f(x)) Image Warping: change domain of image g(x) = f(T(x))

4 Parametric (global) warping Examples of parametric warps: translation rotation aspect affine perspective cylindrical

5 Parametric (global) warping Transformation T is a coordinate-changing machine: p’ = T(p) What does it mean that T is global? Is the same for any point p can be described by just a few numbers (parameters) Let’s represent T as a matrix: p’ = Mp T p = (x,y)p’ = (x’,y’)

6 Scaling Scaling a coordinate means multiplying each of its components by a scalar Uniform scaling means this scalar is the same for all components: x 2

7 Non-uniform scaling: different scalars per component: Scaling X x 2, Y x 0.5

8 Scaling Scaling operation: Or, in matrix form: scaling matrix S What’s inverse of S?

9 2-D Rotation θ (x, y) (x’, y’) x’ = x cos(θ) - y sin(θ) y’ = x sin(θ) + y cos(θ)

10 2-D Rotation x = r cos (  ) y = r sin (  ) x’ = r cos (  + θ) y’ = r sin (  + θ) Trig Identity… x’ = r cos(  ) cos(θ) – r sin(  ) sin(θ) y’ = r sin(  ) cos(θ) + r cos(  ) sin(θ) Substitute… x’ = x cos(θ) - y sin(θ) y’ = x sin(θ) + y cos(θ) θ (x, y) (x’, y’) 

11 2-D Rotation This is easy to capture in matrix form: Even though sin(θ) and cos(θ) are nonlinear functions of θ, –x’ is a linear combination of x and y –y’ is a linear combination of x and y What is the inverse transformation? –Rotation by –θ –For rotation matrices R

12 2x2 Matrices What types of transformations can be represented with a 2x2 matrix? 2D Identity? 2D Scale around (0,0)?

13 2x2 Matrices What types of transformations can be represented with a 2x2 matrix? 2D Rotate around (0,0)? 2D Shear?

14 2x2 Matrices What types of transformations can be represented with a 2x2 matrix? 2D Mirror about Y axis? 2D Mirror over (0,0)?

15 2x2 Matrices What types of transformations can be represented with a 2x2 matrix? 2D Translation? Only linear 2D transformations can be represented with a 2x2 matrix NO!

16 All 2D Linear Transformations Linear transformations are combinations of … –Scale, –Rotation, –Shear, and –Mirror Properties of linear transformations: –Origin maps to origin –Lines map to lines –Parallel lines remain parallel –Ratios are preserved –Closed under composition

17 Consider a different Basis v =(v i,v j ) u=(u i,u j ) p uv j =(0,1) i =(1,0) p ij p ij =5i+4j = (5,4)p uv = 4u+3v = (4,3)

18 Linear Transformations as Change of Basis Any linear transformation is a change of basis!!! j =(0,1) i =(1,0) p ij = 4u+3v = (p i,p j ) ? p i = 4u i +3v i p j = 4u j +3v j v =(v i,v j ) u=(u i,u j ) p uv p ij p uv = (4,3) p uv p ij  jj ii jj ii vu vu vu vu 3 4

19 What’s the inverse transform? How can we change from any basis to any basis? What if the basis are orthonormal? And orthogonal? v =(v i,v j ) u=(u i,u j ) p uv j =(0,1) i =(1,0) p ij = (5,4) p ij p uv = (p u,p v ) = ?= p u u + p v v p ij p uv  jj ii jj ii vu vu vu vu 4 5

20 Projection onto orthonormal basis v =(v i,v j ) u=(u i,u j ) p uv j =(0,1) i =(1,0) p ij = (5,4) p ij p uv = (u·p ij, v·p ij ) p ij p uv  ji ji ji ji vv uu vv uu 4 5 NOTE: The inverse is just the transpose!

21 Homogeneous Coordinates Q: How can we represent translation as a 3x3 matrix?

22 Homogeneous Coordinates Represent coordinates in 2 dimensions with a 3-vector

23 Homogeneous Coordinates Add a 3rd coordinate to every 2D point –(x, y, w) represents a point at location (x/w, y/w) –(x, y, 0) represents a point at infinity or a vector –(0, 0, 0) is not allowed Convenient coordinate system to represent many useful transformations 1 2 1 2 (2,1,1) or (4,2,2)or (6,3,3) x y

24 Homogeneous Coordinates Q: How can we represent translation as a 3x3 matrix? A: Using the rightmost column:

25 Translation Example of translation t x = 2 t y = 1 Homogeneous Coordinates

26 Basic 2D Transformations Basic 2D transformations as 3x3 matrices Translate RotateShear Scale

27 Matrix Composition Transformations can be combined by matrix multiplication p’ = T(t x,t y ) R(  ) S(s x,s y ) p Does the order of multiplication matter?

28 Affine Transformations Affine transformations are combinations of … –Linear transformations, and –Translations Properties of affine transformations: –Origin does not necessarily map to origin –Lines map to lines –Parallel lines remain parallel –Ratios are preserved –Closed under composition –Model change of basis Will the last coordinate w always be 1?

29 Projective Transformations Projective transformations … –Affine transformations, and –Projective warps Properties of projective transformations: –Origin does not necessarily map to origin –Lines map to lines –Parallel lines do not necessarily remain parallel –Ratios are not preserved –Closed under composition –Models change of basis

30 2D image transformations These transformations are a nested set of groups Closed under composition and inverse is a member

31 Recovering Transformations What if we know f and g and want to recover the transform T? –willing to let user provide correspondences How many do we need? xx’ T(x,y) yy’ f(x,y)g(x’,y’) ?

32 Translation: # correspondences? How many Degrees of Freedom? How many correspondences needed for translation? What is the transformation matrix? xx’ T(x,y) yy’ ?

33 Euclidian: # correspondences? How many DOF? How many correspondences needed for translation+rotation? xx’ T(x,y) yy’ ?

34 Affine: # correspondences? How many DOF? How many correspondences needed for affine? xx’ T(x,y) yy’ ?

35 Projective: # correspondences? How many DOF? How many correspondences needed for projective? xx’ T(x,y) yy’ ?

36 Slide Credits This set of sides also contains contributions kindly made available by the following authors –Alexei Efros –Richard Szelisky


Download ppt "CS 691 Computational Photography Instructor: Gianfranco Doretto Image Warping."

Similar presentations


Ads by Google