Download presentation
Presentation is loading. Please wait.
Published byKelsi Hough Modified over 9 years ago
1
Ændr 2. linje i overskriften til AU Passata Light 23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU ESTIMATING THE CONTENT OF CLOVER AND GRASS IN THE SWARD USING A CONSUMER CAMERA AND IMAGE PROCESSING A. K. Mortensen 1, H. Karstoft 1, K. Søegaard 2 and R. N. Jørgensen 1 1 Department of Engineering, Aarhus University 2 Department of Agroecology, Aarhus University
2
23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU Overskrift én linje Bold eller Regular OUTLINE Motivation Test bed and data acquisition Methodology Results Conclusion and future work
3
23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU Overskrift én linje Bold eller Regular MOTIVATION Clover and grass is sown as a catch crop and as a feed crop However, it is unknown how the distribution is in the field The distribution and total dry matter determines › the N-uptake in the field › As feed for dairy cows › intake › milk yield Current method is destructive analysis › Labour intensive › Cumbersome
4
23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU Overskrift én linje Bold eller Regular TEST BED AND DATA ACQUISITION Plot experiment (2013) near Research Center Foulum, Denmark Two different seed mixtures: › “Blanding 35”: perennial ryegrass and white clover › “Blanding 45”: perennial ryegrass, festulolium, red clover and white clover Photographed and cut on 4 different occasions › Cuts made within 3 days after photograph › Photographed from above › 45 images › Dry matter analysis in laboratory › Dry matter: 195 kg/ha 6111 kg/ha › Clover: 10-72% › Grass: 26-90% › Weed: 0-3%
5
23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU Overskrift én linje Bold eller Regular TEST BED AND DATA ACQUISITION
6
23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU Overskrift én linje Bold eller Regular TEST BED AND DATA ACQUISITION
7
23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU Overskrift én linje Bold eller Regular METHODOLOGY
8
23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU Overskrift én linje Bold eller Regular METHODOLOGY Illumination classification Direct and indirect sun light Histogram of pixel intensities Cross correlation used for classification
9
23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU Overskrift én linje Bold eller Regular METHODOLOGY Coverage estimation Remove background: › Soil, dead plant material and deep shadows Extract clover leafs: › Inverted edge image + erosion Grass: › Remaining Trained on patches
10
23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU Overskrift én linje Bold eller Regular METHODOLOGY Transformation of coverage to dry matter distribution
11
23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU Overskrift én linje Bold eller Regular RESULTS Coverage estimation Direct light Indirect light Sh*So*G*C*F*W*∑ Sh*So*G*C*F*W*∑ Sh 66%1%25%8%0% 2955 Sh 52%11%29%9%0% 3934 So 0% 0 So 11%87%2%1%0% 2422 G 9%0%73%17%0% 4745 G 11%1%65%23%0% 6757 C 13%0%39%48%0% 6565 C 3%0%29%68%0% 13491 F 30%20%46%4%0% 254 F 18%0%77%5%0% 79 W 24%0%71%4%0% 181 W 7%0%52%41%0% 617 ∑*3361986986425500- ∑* 3541265497951131000-
12
23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU Overskrift én linje Bold eller Regular RESULTS Dry matter distribution No correlation between error and mixture, clover dry matter or total dry matter. Error (%-points) Absolute error (%-points) MeanStd.MaxMin MeanStd.MaxMin Test set: Clover -2.19.819.1-15.6 7.95.819.10.0 Grass 2.610.417.4-18.7 8.85.718.71.3 Training set: Clover 0.012.918.9-50.3 8.69.450.30.2 Grass0.013.551.0-20.7 9.29.751.00.2
13
23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU Overskrift én linje Bold eller Regular CONCLUSION AND FUTURE WORK It is possible with a reasonable accuracy (8-9%-points) Greatest source of error › Coverage estimation Room for improvement › Better estimation of coverage › Texture analysis › Illumination invariant model › Include growth models › Time since last harvest › Temperature sum › Available water
14
AARHUS UNIVERSITY AU
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.