Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ændr 2. linje i overskriften til AU Passata Light 23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU ESTIMATING THE CONTENT OF CLOVER AND GRASS IN THE SWARD USING.

Similar presentations


Presentation on theme: "Ændr 2. linje i overskriften til AU Passata Light 23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU ESTIMATING THE CONTENT OF CLOVER AND GRASS IN THE SWARD USING."— Presentation transcript:

1 Ændr 2. linje i overskriften til AU Passata Light 23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU ESTIMATING THE CONTENT OF CLOVER AND GRASS IN THE SWARD USING A CONSUMER CAMERA AND IMAGE PROCESSING A. K. Mortensen 1, H. Karstoft 1, K. Søegaard 2 and R. N. Jørgensen 1 1 Department of Engineering, Aarhus University 2 Department of Agroecology, Aarhus University

2 23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU Overskrift én linje Bold eller Regular OUTLINE  Motivation  Test bed and data acquisition  Methodology  Results  Conclusion and future work

3 23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU Overskrift én linje Bold eller Regular MOTIVATION  Clover and grass is sown as a catch crop and as a feed crop  However, it is unknown how the distribution is in the field  The distribution and total dry matter determines › the N-uptake in the field › As feed for dairy cows › intake › milk yield  Current method is destructive analysis › Labour intensive › Cumbersome

4 23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU Overskrift én linje Bold eller Regular TEST BED AND DATA ACQUISITION  Plot experiment (2013) near Research Center Foulum, Denmark  Two different seed mixtures: › “Blanding 35”: perennial ryegrass and white clover › “Blanding 45”: perennial ryegrass, festulolium, red clover and white clover  Photographed and cut on 4 different occasions › Cuts made within 3 days after photograph › Photographed from above › 45 images › Dry matter analysis in laboratory › Dry matter: 195 kg/ha  6111 kg/ha › Clover: 10-72% › Grass: 26-90% › Weed: 0-3%

5 23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU Overskrift én linje Bold eller Regular TEST BED AND DATA ACQUISITION

6 23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU Overskrift én linje Bold eller Regular TEST BED AND DATA ACQUISITION

7 23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU Overskrift én linje Bold eller Regular METHODOLOGY

8 23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU Overskrift én linje Bold eller Regular METHODOLOGY  Illumination classification  Direct and indirect sun light  Histogram of pixel intensities  Cross correlation used for classification

9 23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU Overskrift én linje Bold eller Regular METHODOLOGY  Coverage estimation  Remove background: › Soil, dead plant material and deep shadows  Extract clover leafs: › Inverted edge image + erosion  Grass: › Remaining  Trained on patches

10 23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU Overskrift én linje Bold eller Regular METHODOLOGY  Transformation of coverage to dry matter distribution

11 23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU Overskrift én linje Bold eller Regular RESULTS  Coverage estimation Direct light Indirect light Sh*So*G*C*F*W*∑ Sh*So*G*C*F*W*∑ Sh 66%1%25%8%0% 2955 Sh 52%11%29%9%0% 3934 So 0% 0 So 11%87%2%1%0% 2422 G 9%0%73%17%0% 4745 G 11%1%65%23%0% 6757 C 13%0%39%48%0% 6565 C 3%0%29%68%0% 13491 F 30%20%46%4%0% 254 F 18%0%77%5%0% 79 W 24%0%71%4%0% 181 W 7%0%52%41%0% 617 ∑*3361986986425500- ∑* 3541265497951131000-

12 23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU Overskrift én linje Bold eller Regular RESULTS  Dry matter distribution  No correlation between error and mixture, clover dry matter or total dry matter. Error (%-points) Absolute error (%-points) MeanStd.MaxMin MeanStd.MaxMin Test set: Clover -2.19.819.1-15.6 7.95.819.10.0 Grass 2.610.417.4-18.7 8.85.718.71.3 Training set: Clover 0.012.918.9-50.3 8.69.450.30.2 Grass0.013.551.0-20.7 9.29.751.00.2

13 23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU Overskrift én linje Bold eller Regular CONCLUSION AND FUTURE WORK  It is possible with a reasonable accuracy (8-9%-points)  Greatest source of error › Coverage estimation  Room for improvement › Better estimation of coverage › Texture analysis › Illumination invariant model › Include growth models › Time since last harvest › Temperature sum › Available water

14 AARHUS UNIVERSITY AU


Download ppt "Ændr 2. linje i overskriften til AU Passata Light 23 NOVEMBER 2014 NJF AARHUS UNIVERSITY AU ESTIMATING THE CONTENT OF CLOVER AND GRASS IN THE SWARD USING."

Similar presentations


Ads by Google