Presentation is loading. Please wait.

Presentation is loading. Please wait.

2.3 共轭斜量法 ( Conjugate Gradient Methods) 属于一种迭代法,但如果不考虑计算过程的舍入误 差, CG 算法只用有限步就收敛于方程组的精确解.

Similar presentations


Presentation on theme: "2.3 共轭斜量法 ( Conjugate Gradient Methods) 属于一种迭代法,但如果不考虑计算过程的舍入误 差, CG 算法只用有限步就收敛于方程组的精确解."— Presentation transcript:

1 2.3 共轭斜量法 ( Conjugate Gradient Methods) 属于一种迭代法,但如果不考虑计算过程的舍入误 差, CG 算法只用有限步就收敛于方程组的精确解

2 Outline  Background  Steepest Descent  Conjugate Gradient

3 1 Background The min(max) problem: But we learned in calculus how to solve that kind of question!

4 “real world” problem Connectivity shapes (isenburg,gumhold,gotsman) What do we get only from C without geometry?

5 Motivation- “real world” problem First we introduce error functionals and then try to minimize them:

6 Motivation- “real world” problem  Then we minimize:  High dimension non-linear problem.  Conjugate gradient method is maybe the most popular optimization technique based on what we’ll see here.

7 Directional Derivatives: first, the one dimension derivative:

8 Directional Derivatives : Along the Axes…

9 Directional Derivatives : In general direction…

10 Directional Derivatives

11 In the plane The Gradient: Definition in

12 The Gradient: Definition

13 基本思想  Modern optimization methods  A method to solve quadratic function minimization: (A is symmetric and positive definite)

14

15 2 最速下降法 ( Steepest Descent ) ( 1 )概念:将 点的修正方向取为该点的负 梯度方向 ,即为最速下降 方向,该方法进而称之为最速下降法. ( 2 )计算公式:任意取定初始向量,

16 Steepest Descent

17

18 3 共轭斜量法 ( Conjugate Gradient )  Modern optimization methods : “conjugate direction” methods.  A method to solve quadratic function minimization: (A is symmetric and positive definite)

19 Conjugate Gradient Originally aimed to solve linear problems: Later extended to general functions under rational of quadratic approximation to a function is quite accurate.

20 Conjugate Gradient  The basic idea: decompose the n-dimensional quadratic problem into n problems of 1-dimension  This is done by exploring the function in “conjugate directions”.  Definition: A-conjugate vectors:

21 Conjugate Gradient If there is an A-conjugate basis then: N problems in 1-dimension (simple smiling quadratic) The global minimizer is calculated sequentially starting from x 0 :

22 Conjugate Gradient

23

24 Gradient

25 4 共轭斜量法与最速下降法的比较:

26


Download ppt "2.3 共轭斜量法 ( Conjugate Gradient Methods) 属于一种迭代法,但如果不考虑计算过程的舍入误 差, CG 算法只用有限步就收敛于方程组的精确解."

Similar presentations


Ads by Google