Download presentation
Presentation is loading. Please wait.
Published byRonnie Minshall Modified over 9 years ago
1
Cambridge, Massachusetts Perception of Elementary Graphical Elements in Tabletop and Multi-Surface Environments Daniel Wigdor, Chia Shen, Clifton Forlines, Ravin Balakrishnan CHI 2007 Department of Computer Science, University of Toronto
2
Acknowledgements John Barnwell John Hancock MERL & DGP Lab members Experiment participants
5
In-Plane Rotation
6
NOT THIS PAPER
7
Planar Rotation
15
Information Graphics
17
Encoding & Decoding 1528 2352
18
Encoding & Decoding 1528 2352 Encode
19
Encoding & Decoding 1528 2352 Encode Decode
20
*
21
Cleveland and McGill: Elementary Perceptual Tasks Bertin: Visual Variables
22
Visual Variables
23
Colour
24
Visual Variables Colour
25
Visual Variables Colour
26
Visual Variables Colour
27
Visual Variables Colour Position
28
Visual Variables Colour Position
29
Visual Variables Colour Position Slope
30
Visual Variables Colour Position Slope
31
Visual Variables Colour Position Slope
32
Visual Variables Colour Position Slope
33
Visual Variables Colour Position Slope
34
Visual Variables Colour Position Slope Length
35
Visual Variables Colour Position Slope Length
36
Visual Variables Colour Position Slope Length
37
Visual Variables Colour Position Slope Length Area
38
Visual Variables Colour Position Slope Length Area
39
Visual Variables Colour Position Slope Length Area Angle
40
Visual Variables Colour Position Slope Length Area Angle
41
Visual Variables Colour Position Slope Length Area Angle
42
Visual Variables Colour Position Slope Length Area Angle
43
Visual Variables Colour Position Slope Length Area Angle Modulus:
44
Visual Variables Colour Position Slope Length Area Angle Modulus: Stimulus:
45
Visual Variables Colour Position Slope Length Area Angle Modulus: Stimulus: Answer: 38%
46
Visual Variables Colour Position Slope Length Area Angle Modulus: Stimulus: Answer: 38%
47
Visual Variables Colour Position Slope Length Area Angle
48
Visual Variables Colour Position Slope Length Area Angle Modulus:
49
Stimulus: Visual Variables Colour Position Slope Length Area Angle
50
Modulus: Stimulus: Answer: 40% Visual Variables Colour Position Slope Length Area Angle
51
Modulus: Stimulus: Answer: 40% Visual Variables Colour Position Slope Length Area Angle
52
Visual Variables Colour Position Slope Length Area Angle
53
Modulus: Visual Variables Colour Position Slope Length Area Angle
54
Modulus: Stimulus: Visual Variables Colour Position Slope Length Area Angle
55
Modulus: Stimulus: Answer: 67% Visual Variables Colour Position Slope Length Area Angle
56
Modulus: Stimulus: Answer: 67% Visual Variables Colour Position Slope Length Area Angle
57
57 Poor Elementary Perception
58
58 Slope vs Position
59
59 Slope vs Position
60
Experimental Task (Cleveland & McGill)
64
Conclusions (Cleveland & McGill) Error correlated with distance Rank order of elementary tasks: 1.Position, common scale 2.Position, identical nonaligned scales 3.Length 4.Angle 5.Slope 6.Area 7.Volume, Density, Colour saturation 8.Colour hue
65
Graphical Perception on a Rotated Plane Vs.
66
Our Visual Variables:
67
Experimental Task Example: Line Length
68
Experiment 1: Single-Screen Comparisons 90° (Vertical) 60° 30° 0° (Tabletop)
72
Hypotheses I. As the display is tilted, the accuracy of relative magnitude judgements decreases.
73
Hypotheses I. As the display is tilted, the accuracy of relative magnitude judgements decreases. Error Display Angle Vertical Tabletop
74
Hypotheses II. The up/down distance between objects is positively correlated with the increase in error in magnitude judgements due to screen angle. Up/Down Distance ERROR
75
Hypotheses II. The up/down distance between objects is positively correlated with the increase in error in magnitude judgements due to screen angle. Tabletop Vertical
76
Hypotheses III. Different visual variable types have differing increases in the error in judgements.
77
Hypotheses III. Different visual variable types have differing increases in the error in judgements.
78
Hypotheses IV. Sideways presentations of objects experience less error in magnitude judgements due to screen angle than upright presentations.
79
Hypotheses IV. Sideways presentations of objects experience less error in magnitude judgements due to screen angle than upright presentations. Error
80
Hypotheses V. There will be no effect for side-to-side distance on the accuracy of magnitude perception. Side-to-side Distance
81
Hypotheses V. There will be no effect for side-to-side distance on the accuracy of magnitude perception. Side-to-side Distance
82
slope area position length angle Rank Ordering of Visual Variable Perceptibility Vertical Ranking: Tabletop Ranking:
83
position (upright) length (upright) angle (upright) slope area position (sideways) length (sideways) angle (sideways) position (upright) length (upright) angle (upright) slope area position (sideways) length (sideways) angle (sideways) length (upright) angle (upright) slope area position (sideways) length (sideways) angle (sideways) position (upright) Rank Ordering of Visual Variable Perceptibility Vertical Ranking: Tabletop Ranking:
84
Multi-Surface Environments
85
Experiment 2: Apparatus
86
Hypotheses I.There is an increase in error when comparing visual variable magnitudes between upright and tabletop displays versus comparing on displays of a single orientation.
87
Hypotheses I.There is an increase in error when comparing visual variable magnitudes between upright and tabletop displays versus comparing on displays of a single orientation.
88
Hypotheses II.The error increase when comparing between displays is unevenly distributed across visual variable types.
89
Hypotheses II.The error increase when comparing between displays is unevenly distributed across visual variable types.
90
Hypotheses III.The size of the error on the mixed-orientation condition is larger than the largest errors in the previous experiment.
91
Hypotheses III. The size of the error on the mixed-orientation condition is larger than the largest errors in the previous experiment.
92
Recommendations Mixed-orientation screen comparisons are hard Ordered list (different than before): 1.length (sideways) 2.length (upright) 3.position (sideways) 4.angle (sideways) 5.area 6.angle (upright) 7.position (upright) 8.slope
93
Conclusions Don’t compare across display orientations Special visualisations for tabletops & multi-surface spaces
94
Future Work Σ = ?
95
Questions?
96
Experiment 1 Design 12 participants x 4 display angles x 4 visual variables (per participant) x 3 modulus positions x 9 stimulus positions x 3 magnitude estimates = 15,552 total comparisons
97
Experiment 2 Design 8 participants x 2 display angles x 8 visual variables x 31 magnitude estimates = 3,968 total comparisons
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.