Download presentation
Presentation is loading. Please wait.
Published byPerla Bendell Modified over 10 years ago
1
Structure, Properties and Bonding of Organometallic Compounds Dr. Christoph Jan.2012
2
What is “Organometallic Chemistry” ?
4
Main Group Compounds http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/alhalrx4.htm Alkali and earth alkali metals have a high attraction to halogens. They can even detach a halogen atom from an organic C-X bond and “insert” into this bond: Reaction with dihalides can form double bond:
5
The metal can be: Li, Na, K, Mg, Ca, and also Sn and Zn (metals must be clean and have big surface) The reactions take place in Ether or THF, free of water !
6
Grignard Chemistry Grignard Reagents – creating carbanions for nucleophilic attack reactions Mg Powder in Ether or THF reacts with R-X compounds (aliphatic and aromatic) by “inserting” in the C-X bond. http://www.chemgapedia.de/vsengine/vlu/vsc/en/ch/12/oc/vlu_organik/substitution/alkylhalogenide/metallorg_verbindungen.vlu/ Page/vsc/en/ch/12/oc/substitution/alkylhalogenide/organometall2/organometall2.vscml.html
7
Creation of carbon-nucleophils
8
More on: http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/alhalrx4.htm
9
Transition Metals Low EN High Oxidation States “hard” metal centers Higher EN Low Oxidation States “soft” metal centers Note that we count the two s- electrons of the atom together with the d- electrons ! For example Ti atom has 4s2, 3d2 BUT we count it as 4 d-electrons in a molecule with Ti !
10
First organometal compounds Note that the ethylene molecule is NOT flat anymore but has some sp3 hybridization on the carbons ! That means also that the C=C bond is not a complete double bond anymore !
12
“Hapticity” η (eta) For example with Cyclopentadiene:
13
Bridging Ligands (μ)
14
Common Coordinations (1) Six coordinate - octahedral (ML6) but also: Cp(-) bonds with 3 electron pairs to the metal (similar to benzene) => Cp(-) counts as 3 ligands !
15
(2) Five coordinate (ML5) Trigonal bipyramidal Square pyramidal (rare !)
16
(3) Four coordinate (ML4) Tetragonal (mostly 1 st row Transition Metal) Square planar (2 nd and 3 rd row Transition Metal)
17
Metal-Ligand Bonds (1) σ-donor Ligands
18
That means also that a ML6 molecule can exist with 12 valence electrons up to 22. The best situation is to have 18 electrons !
19
Group Orbitals from ligands: For a σ donor ligand, we consider just the electron pair that donates electrons. We combine 6 ligand orbitals (whether in s- or p-AO does NOT matter !) to 6 SALCs (Symmetry Adapted Linear Combination) SALC = combination of the 6 ligand AO’s spherical around the center of an octahedron.
20
Symmetry of orbitals depending on the point group In an octahedral molecule Oh the s-orbital has A1 symmetry, the p-orbitals form a set of T1 orbitals, the d-orbitals have 2 different sets of symmetry: Eg and T2g (2 plus 3 AO’s) We can combine the 6 ligand orbitals around the center in the way that we get a match with A1, with T1 and with Eg – the T2g orbitals of the metal do not find a partner here !
22
Strong and weak σ donors weak
23
Bonding and Group Orbitals Part 2 of Organometallic Compounds
24
CH 4 molecule Fill the electrons and mark the HOMO and LUMO. Draw the MO’s of the HOMO and LUMO as well. We combine the 4 Hydrogen AO’s together with the symmetry of the molecule (Td). One combination has no node (low energy), three combinations have each one node plane (set of 3)
25
http://firstyear.chem.usyd.edu.au/calculators/mo_diagrams.shtml
26
http://www.webqc.org/symmetry.php The symmetry of the 3 combinations of H-AO’s in CH4 => have the same energy, the representation t2 and match with the 3 p-orbitals of Carbon !
27
Complete the MO Diagrams on the website for: 1.CN(-) 2.CO 3.NO 4.NO(+) 5.CH4 6.BH3 7.SF6 8.Fe(OH2)6 (3+) 9.TiCl4 10.CuCl4(2-) http://firstyear.chem.usyd.edu.au/calculators/mo_diagrams.shtml
28
Paramagnetic O 2 Draw a MO diagram for oxygen and explain why it is a di-radical and therefore paramagnetic ! Mark the HOMO and LUMO and draw the MO’s.
29
This MO is lower in energy than the π- orbitals because of bigger overlap. Different from N2, this σp-MO is not pushed up in energy by the lower σs-MO which is antibonding !
31
[Co(NH 3 ) 6 ] 3+ as an example Six LGO (Ligand group orbitals) have symmetries that match the s, p and dz 2 and dx 2 -y 2 orbitals.
32
Where is the energy difference (between which orbitals) that corresponds to D o (10Dq)? Which orbitals are anti- and which are non-bonding? Fill the electrons into the labels and count the total number. Mark the LUMO and HOMO.
33
(2) π-Donor Ligands => Ligands like Cl - are both σ-donor AND π-donors
34
Filled π ligand orbitals change non-bonding metal d-orbitals into antibonding => Raising of the t2g level and reducing the crystal field splitting energy
35
Multiple bonds as σ- donors A new interaction comes up ! One of the former non-bonding t2g d- orbitals can now interact with an empty π* MO of ethylene !
36
The “Donation” bond causes no rotation barrier, but the back-bonding does !
37
Dewar-Chatt-Duncanson Model
38
M-ethylene bonds
39
Bonding Situation => Reactivity ! Depending on the metal and the other ligands on the metal center, the “real” situation for an olefin complex is in between these extremes !
40
Nucleophilic attack on C β-H-Elimination Example: Nu = H2O Wacker Process to create Acetaldehyde
41
Electrophilic attack on Metal Example: “Shell Higher Olefin Process SHOP” = Oligomerisation of Ethylene
43
Cp(-) as ligand
44
This type of molecule is more interesting as catalyst because it can easily lose/replace a Cl- ligand
45
Transition metal Cp Complex Families
46
(3) π-acceptor Ligands Because of the symmetry of the p-orbital, it is also possible that a metal can push electrons into an empty p-orbital of a ligand, which is normally anti-bonding for the ligand molecule! => the bond in the ligand becomes weaker then !
47
Which additional interactions do we get If the ligands have empty π* orbitals ? For example with CO: π*π* Electrons from a metal d- orbital (t2 set) can go into the antibonding MO of a CO ligand ! We call this π-backbonding !
48
Each CO ligand has two empty π* orbitals. They can accept electrons from a metal d-orbital (dxy, dxz, dyz) ! Because of the HOMO the CO ligand has high electron density on the carbon => can act as σ-donor as well !
49
“π-Backbonding”
50
Ligands with π-Backbonding
51
3 combinations of π* CO ligands can overlap with the 3 d-orbitals of t 2g (d xy, d xz,d yz )
52
CO Complexes as starting materials for synthesis (a) Thermal CO substitution (b) Photochemical CO substitution
53
Complete the MO Diagrams on this website for different molecules as group work (see list on the office door) Draw on paper or print it out -> to office SC 2201 please until 24.1.2555, thank you ! http://firstyear.chem.usyd.edu.au/calculators/mo_diagrams.shtml Homework – get some extra points for the final exam !
54
Thank you for your patience ! This subject is really hard to understand in a short time. Therefore I suggest we will have a make-up lesson in February. If you are interested in catalysis, please contact me or another teacher for a possible project in the lab – thank you ! Thank you for your patience ! This subject is really hard to understand in a short time. Therefore I suggest we will have a make-up lesson in February. If you are interested in catalysis, please contact me or another teacher for a possible project in the lab – thank you !
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.