Download presentation
Presentation is loading. Please wait.
Published byRonald Beachley Modified over 9 years ago
1
Slide C.1 SAS MathematicalMarketing Appendix C: SAS Software Uses of SAS CRM datamining data warehousing linear programming forecasting econometrics nonlinear parameter estimation Data Types SAS Can Deal with massaging sorting merging lookups reporting Web log data questionnaires scanner data Ideal When You Are … simulation marketing models statistical analysis panel data relational databases transforming manipulating
2
Slide C.2 SAS MathematicalMarketing Two Types of SAS Routines DATA Steps Read and Write Data Create a SAS dataset Manipulate and Transform Data Open-Ended - Procedural Language Presence of INPUT statement creates a Loop PROC Steps Analyze Data Canned or Preprogrammed Input and Output
3
Slide C.3 SAS MathematicalMarketing A Simple Example data my_study ; input id gender $ green recycle ; cards ; 001m42 002m31 003f32 ; proc reg data=my_study ; class gender ; model recycle = green gender ;
4
Slide C.4 SAS MathematicalMarketing The Sequence Depends on the Need data step to read in scanner data; data step to read in panel data ; data step to merge scanner and panel records ; data step to change the level of analysis to the household ; proc step to create covariance matrix ; data step to write covariance matrix in LISREL compatable format ;
5
Slide C.5 SAS MathematicalMarketing The INPUT Statement - Character Data List input $ after a variable - character var input last_name $ first_name $ initial $ ; Formatted input $w. after a variable input last_name $22. first_name $22. initial $1. Column input $ start-column - end-column input last_name $ 1 - 22 first_name $ 23 - 44 initial $ 45 ;
6
Slide C.6 SAS MathematicalMarketing The INPUT Statement - Numeric Data List input input score_1 score_2 score_3 ; Formatted input w.d (field width and number of digits after an implied decimal point) after a variable input score_1 $10. score_2 $10. score_3 10. Column input $ start-column - end-column input score_1 1 - 10 score_2 11 - 20 score_3 21 - 30 ;
7
Slide C.7 SAS MathematicalMarketing Grouped INPUT Statements input (var1-var3) (10. 10. 10.) ; input (var1-var3) (3*10.) ; input (var1-var3) (10.) ; input (name var1-var3) ($10. 3*5.1) ;
8
Slide C.8 SAS MathematicalMarketing The Column Pointer in the INPUT Statement input @3 var1 10. ; input more @ ; if more then input @15 x1 x2 ; input @12 x1 5. +3 x2 ;
9
Slide C.9 SAS MathematicalMarketing Documenting INPUT Statements input @4 green1 4. /* greeness scale first item */ @9 green2 4. /* greeness scale 2nd item */ @20 aware1 5. /* awareness scale first item */ @20 aware2 5. ; /* awareness scale 2nd item */
10
Slide C.10 SAS MathematicalMarketing The Line Pointer input x1 x2 x3 / x4 x4 x6 ; input x1 x2 x3 #2 x4 x5 x6 ; input x1 x2 x3 #2 x4 x5 x6 ;
11
Slide C.11 SAS MathematicalMarketing The PUT Statement put _all_ ; put a= b= ; put _infile_ ; put _page_ ; col1 = 22 ; col2 = 14 ; put @col1 var245 @col2 var246 ; put x1 x2 x3 @ ; input x4 ; put x4 ; put x1 #2 x2 ; put x1 / x2 ;
12
Slide C.12 SAS MathematicalMarketing Copying Raw Data infile in ′c:\old.data′ ; file out ′c:\new.data′ ; data _null_ ; infile in ; outfile out ; input ; put _infile_ ;
13
Slide C.13 SAS MathematicalMarketing SAS Constants '21Dec1981'D 'Charles F. Hofacker' 492992.1223
14
Slide C.14 SAS MathematicalMarketing Assignment Statement x = a + b ; y = x / 2. ; prob = 1 - exp(-z**2/2) ;
15
Slide C.15 SAS MathematicalMarketing The SAS Array Statement array y {20} y1-y20 ; do i = 1 to 20 ; y{i} = 11 - y{i} ; end ;
16
Slide C.16 SAS MathematicalMarketing The Sum Statement variable+expression ; retain variable ; variable = variable + expression ; n+1 ; cumulated + x ;
17
Slide C.17 SAS MathematicalMarketing IF Statement if a >= 45 then a = 45 ; if 0 < age < 1 then age = 1 ; if a = 2 or b = 3 then c = 1 ; if a = 2 and b = 3 then c = 1 ; if major = "FIN" ; if major = "FIN" then do ; a = 1 ; b = 2 ; end ;
18
Slide C.18 SAS MathematicalMarketing More IF Statement Expressions name ne 'smith' name ~= 'smith' x eq 1 or x eq 2 x=1 | x=2 a = c a le b or a ge c a1 and a2 or a3 (a1 and a2) or a3 if then etc ;
19
Slide C.19 SAS MathematicalMarketing Concatenating Datasets Sequentially data both ; set first second ; first: id x y 1 2 3 2 1 2 3 3 1 second: id x y 4 3 2 5 2 1 6 1 1 both: id x y 1 2 3 2 1 2 3 3 1 4 3 2 5 2 1 6 1 1
20
Slide C.20 SAS MathematicalMarketing Interleaving Two Datasets proc sort data=store1 ; by date ; proc sort data=store2 ; by date ; data both ; set store1 store2 ; by date ;
21
Slide C.21 SAS MathematicalMarketing Concatenating Datasets Horizontally data both ; merge left right ; left: id y1 y2 1 2 3 2 1 2 3 3 1 right: id x1 x2 1 3 2 2 2 1 3 1 1 both: id y1 y2 x1 x2 1 2 3 3 2 2 1 2 2 1 3 3 1 1 1
22
Slide C.22 SAS MathematicalMarketing Table LookUp proc sort data=database out=sorted by part ; data both ; merge table sorted ; by part ; table: part desc 0011 hammer 0012 nail 0013 bow database: id part 1 0011 2 0011 3 0013 both: id part desc 1 0011 hammer 2 0011 hammer 3 0013 bow The last observations is repeated if one of the input data sets is smaller
23
Slide C.23 SAS MathematicalMarketing Update master: part desc 0011 hammer 0012 nail 0013 bow transaction: Part desc 0011 jackhammer data new_master ; update master transaction ; by part ; new_master: part desc 0011 jackhammer 0012 nail 0013 bow
24
Slide C.24 SAS MathematicalMarketing Changing the Level of Analysis 1 Subject Time Score A 1 A 1 A 2 A 2 A 3 A 3 B 1 B 1 B 2 B 2 B 3 B 3 Subject Score1 Score2 Score3 A A 1 A 2 A 3 B B 1 B 2 B 3 Before After
25
Slide C.25 SAS MathematicalMarketing Changing the Level of Analysis 1 data after ; keep subject score1 score2 score3 ; retain score1 score2 ; set before ; if time=1 then score1 = score ; else if time=2 then score2 = score ; else if time=3 then do ; score3 = score ; output ; end ;
26
Slide C.26 SAS MathematicalMarketing Changing the Level of Analysis 2 Day Score Student 1 12 A 1 11 B 1 13 C 2 14 A 2 10 B 2 9 C Day Highest Student 1 13 C 2 14 A Before After
27
Slide C.27 SAS MathematicalMarketing Changing the Level of Analysis 2 FIRST. and LAST. Variable Modifiers proc sort data=log ; by day ; data find_highest ; retain hightest ; drop score ; set log ; by day ; if first.day then highest=. ; if score > highest then highest = score ; if lastday then output ;
28
Slide C.28 SAS MathematicalMarketing The KEEP and DROP Statements keep a b f h ; drop x1-x99 ; data a(keep = a1 a2) b(keep = b1 b2) ; set x ; if blah then output a ; else output b ;
29
Slide C.29 SAS MathematicalMarketing Changing the Level of Analysis 3 Spreading Out an Observation Subject Score1 Score2 Score3 A A 1 A 2 A 3 B B 1 B 2 B 3 Subject Time Score A 1 A 1 A 2 A 2 A 3 A 3 B 1 B 1 B 2 B 2 B 3 B 3 Before After
30
Slide C.30 SAS MathematicalMarketing Changing the Level of Analysis 3 – SAS Code data spread ; drop score1 score2 score3 ; set tight ; time = 1 ; score = score1 ; output ; time = 2 ; score = score2 ; output ; time = 3 ; score = score3 ; output ;
31
Slide C.31 SAS MathematicalMarketing Use of the IN= Dataset Indicator data new ; set old1 (in=from_old1) old2 (in=from_old2) ; if from_old1 then … ; if from_old2 then … ;
32
Slide C.32 SAS MathematicalMarketing Proc Summary for Aggregation proc summary data=raw_purchases ; by household ; class brand ; var x1 x2 x3 x4 x5 ; output out=household mean=overall ;
33
Slide C.33 SAS MathematicalMarketing Using SAS for Simulations data monte_carlo ; keep y1 - y4 ; array y{4} y1 - y4 ; array loading{4} l1 - l4 ; array unique{4} u1 - u4 ; l1 = 1 ; l2 =.5 ; l3 =.5 ; l4 =.5 ; u1 =.2 ; u2 =.2 ; u3 =.2 ; u4 =.2 ; do subject = 1 to 100 ; eta = rannor(1921) ; do j = 1 to 4 ; y{j} = eta*loading{j} + unique{j}*rannor(2917) ; end ; output ; end ; proc calis data=monte_carlo ; etc. ; Simulation Loop
34
Slide C.34 SAS MathematicalMarketing External Data Sets and Windows/Vista filename trans 'C:\Documents\june\transactions.data' ; libname clv 'C:\Documents\customer_projects\' ;... data clv.june ; infile trans ; input id 3. purch 2. day 3. month $ ;
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.