Download presentation
Presentation is loading. Please wait.
Published byGenevieve Bourns Modified over 9 years ago
1
DCM for evoked responses Harriet Brown SPM for M/EEG course, 2013
2
The DCM analysis pathway
3
Collect data Build model(s) Fit your model parameters to the data Pick the best model Make an inference (conclusion) The DCM analysis pathway
4
Collect data Build model(s) Fit your model parameters to the data Pick the best model Make an inference (conclusion) The DCM analysis pathway
5
Data for DCM for ERPs 1.Downsample 2.Filter (1-40Hz) 3.Epoch 4.Remove artefacts 5.Average
6
Collect data Build model(s) Fit your model parameters to the data Pick the best model Make an inference (conclusion) The DCM analysis pathway
7
Collect data Build model(s) Fit your model parameters to the data Pick the best model Make an inference (conclusion) The DCM analysis pathway ‘hardwired’ model features
8
Models
9
Standard 3-population model (‘ERP’)
10
Canonical Microcircuit Model (‘CMC’) Granular Layer Supra- granular Layer Infra- granular Layer Output equation:
11
Canonical Microcircuit Model (‘CMC’)
12
Granular Layer Supra- granular Layer Infra- granular Layer
13
Superficial Pyramidal Cells Superficial Pyramidal Cells Canonical Microcircuit Model (‘CMC’) Granular Layer Supra- granular Layer Infra- granular Layer Spiny Stellate Cells Deep Pyramidal Cells Deep Pyramidal Cells Inhibitory Interneurons
14
Canonical Microcircuit Model (‘CMC’) Granular Layer Supra- granular Layer Infra- granular Layer Superficial Pyramidal Cells Superficial Pyramidal Cells Spiny Stellate Cells Deep Pyramidal Cells Deep Pyramidal Cells Inhibitory Interneurons
15
Canonical Microcircuit Model (‘CMC’) Granular Layer Supra- granular Layer Infra- granular Layer Superficial Pyramidal Cells Superficial Pyramidal Cells Spiny Stellate Cells Deep Pyramidal Cells Deep Pyramidal Cells Inhibitory Interneurons
16
Canonical Microcircuit Model (‘CMC’) Granular Layer Supra- granular Layer Infra- granular Layer Superficial Pyramidal Cells Superficial Pyramidal Cells Spiny Stellate Cells Deep Pyramidal Cells Deep Pyramidal Cells Inhibitory Interneurons
17
Canonical Microcircuit Model (‘CMC’) Granular Layer Supra- granular Layer Infra- granular Layer Superficial Pyramidal Cells Superficial Pyramidal Cells Spiny Stellate Cells Deep Pyramidal Cells Deep Pyramidal Cells Inhibitory Interneurons
18
Canonical Microcircuit Model (‘CMC’) Granular Layer Supra- granular Layer Infra- granular Layer Superficial Pyramidal Cells Superficial Pyramidal Cells Spiny Stellate Cells Deep Pyramidal Cells Deep Pyramidal Cells Inhibitory Interneurons
19
Canonical Microcircuit Model (‘CMC’) Granular Layer Supra- granular Layer Infra- granular Layer Superficial Pyramidal Cells Superficial Pyramidal Cells Spiny Stellate Cells Deep Pyramidal Cells Deep Pyramidal Cells Inhibitory Interneurons
20
Canonical Microcircuit Model (‘CMC’) Granular Layer Supra- granular Layer Infra- granular Layer Superficial Pyramidal Cells Superficial Pyramidal Cells Spiny Stellate Cells Deep Pyramidal Cells Deep Pyramidal Cells Inhibitory Interneurons
21
Canonical Microcircuit Model (‘CMC’)
22
Granular Layer Supra- granular Layer Infra- granular Layer
23
Canonical Microcircuit Model (‘CMC’) Granular Layer Supra- granular Layer Infra- granular Layer Output equation:
24
Collect data Build model(s) Fit your model parameters to the data Pick the best model Make an inference (conclusion) The DCM analysis pathway ‘hardwired’ model features
25
Designing your model Area 1Area 2 Area 3 Area 4
26
Designing your model 050100150200250 0 5 10 15 20 25 30 35 time (ms) input input (1) Area 1Area 2 Area 3 Area 4
27
Designing your model 050100150200250 0 5 10 15 20 25 30 35 time (ms) input input (1) Area 1Area 2 Area 3 Area 4
28
Designing your model 050100150200250 0 5 10 15 20 25 30 35 time (ms) input input (1) Area 1Area 2 Area 3 Area 4
29
Designing your model 050100150200250 0 5 10 15 20 25 30 35 time (ms) input input (1) Area 1Area 2 Area 3 Area 4
30
Designing your model 050100150200250 0 5 10 15 20 25 30 35 time (ms) input input (1) Area 1Area 2 Area 3 Area 4
31
Designing your model 050100150200250 0 5 10 15 20 25 30 35 time (ms) input input (1) Area 1Area 2 Area 3 Area 4
32
Collect data Build model(s) Fit your model parameters to the data Pick the best model Make an inference (conclusion) The DCM analysis pathway
33
Collect data Build model(s) Fit your model parameters to the data Pick the best model Make an inference (conclusion) The DCM analysis pathway fixed parameters
34
Fitting DCMs to data
37
1.Check your data
38
Fitting DCMs to data 1.Check your data 2.Check your sources
39
1.Check your data 2.Check your sources 3.Check your model Model 1 V4 IPL A19 OFC V4 IPL A19 OFC V4 IPL Model 2 V4 IPL Fitting DCMs to data
40
1.Check your data 2.Check your sources 3.Check your model 4.Re-run model fitting
41
Collect data Build model(s) Fit your model parameters to the data Pick the best model Make an inference (conclusion) The DCM analysis pathway
42
What questions can I ask with DCM for ERPs? Questions about functional networks causing ERPs Garrido et al. (2008)
43
What questions can I ask with DCM for ERPs? Questions about connectivity changes in different conditions or groups Boly et al. (2011)
44
What questions can I ask with DCM for ERPs? Questions about the neurobiological processes underlying ERPs mode 2 50100150200250300350400 -3 -2 0 1 2 3 x 10 -3 mode 1 peri-stimulus time (ms) 400 50100150200250300350 -3 -2 0 1 2 3 x 10 -3 mode 2 peri-stimulus time (ms) 50100150200250300350400 -3 -2 0 1 2 3 x 10 mode 1 peri-stimulus time (ms) -3 50100150200250300350400 -3 -2 0 1 2 3 x 10 peri-stimulus time (ms) -3 Deep Pyramidal Cell gain changed Superficial Pyramidal Cell gain changed Parameter value V4IPLArea 18SOG -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 Area
45
How to use DCM for ERPs well A DCM study is only as good as its hypotheses…
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.