Download presentation
Presentation is loading. Please wait.
Published byAyanna Towsley Modified over 9 years ago
1
Communication lines
2
OSI model Open Systems Interconnection (OSI) model (ISO/IEC 7498-1) Source: homepages.uel.ac.ukhomepages.uel.ac.uk Physical layer – specifies electrical and physical properties (cable) Pins, voltages, impedance, modulation, timing, topology
3
OSI model Open Systems Interconnection (OSI) model (ISO/IEC 7498-1) Source: homepages.uel.ac.ukhomepages.uel.ac.uk Physical layer – Transmits raw bit stream over physical cable IEEE 802, RS232, RS422, RS485, I 2 C, SPI,…
4
OSI model Open Systems Interconnection (OSI) model (ISO/IEC 7498-1) Source: homepages.uel.ac.ukhomepages.uel.ac.uk Data link layer – specifies network data frame (packet), checksum, source and destination address, and data E.g. Ethernet MAC, RS232
5
OSI model Open Systems Interconnection (OSI) model (ISO/IEC 7498-1) Source: homepages.uel.ac.ukhomepages.uel.ac.uk Network layer – routing, directing datagrams from one network to another E.g. IP addresses
6
RS232 (EIA232) Dates from 1969 (RS-232-C) Last standard is TIA/EIA-232-F from 1997 Defines physical and data link layer Single transmitter and receiver TXRX Log. 0 : +5 to +15 V Log. 1 : -15 to -5 V Log. 0 : > +3 V Log. 1 : < -3 V Noise immunity: min. 2 V
7
RS232 (EIA232) Length RS-232-C = 15 m RS-232-F defines max. load capacity 2500 pF TXRX C RX ~20 pF CMCM signal shield CSCS CSCS
8
RS232 - Cable capacity C S ~ 0,5 C M unshielded cable C S ~ 2 C M shielded cable C RX ~20 pF CMCM signal shield CSCS CSCS Max. length: L max = 2500 / C total C total = C M + C S e.g. Belden 1700A TP: 78,7 Ω/km, 45,9 pF/m
9
RS232 - Communication protocol idle Log. 0 : +5 to +15 V Log. 1 : -15 to -5 V start 0 1 0 1 0 1 0 1 1 b0 b1 b2 b3 b4 b5 b6 b7 stop idle 1 (parity) Odd Even data: 11010101b (213dec) LSB MSB 1,1.5,2
10
RS232 - Asynchronous communication idle Fixed comm. speed: tx + rx same (tolerance ~3%) start 0 1 0 1 0 1 0 1 1 b0 b1 b2 b3 b4 b5 b6 b7 stop idle 1 (parity) TXRX
11
RS232 - Communication speed RS-232-F limits to 30 V/µs, max 4% of bit time => max. theoretical speed 200 kbit/s 0 11 ΔtΔt ΔVΔV
12
RS232 - Communication speed RS-232-F standard defines speeds: 50,75,110,150,300,600,1200,2400,4800,9600,19200 bit/s Common speeds above standard definition: 28800, 38400, 57600, 115200 bit/s Higher speed = lower distance Baud rate [Bd]Max length [ft]Max length [m] 19 2005015 9 600500150 4 8001 000300 2 4003 000900 source: www.hw.czwww.hw.cz
13
RS232 - Signals Dev. 1Dev. 2 TxD RxD GND RxD TxD RTS Request to send CTS Clear to send CTS RTS DTR Data terminal ready DCD Data Carrier Detect DSR Data Set Ready DTR DSR DCD
14
RS232 - Connectors source: www.arcelect.comwww.arcelect.com 9 pin
15
RS232 - Connectors source: fjkraan.home.xs4all.nlfjkraan.home.xs4all.nl 25 pin source: www.solentcables.co.ukwww.solentcables.co.uk
16
RS232 - Summary 1 transmitter, 1 receiver Common ground Typically 8 bit, no parity, 1 stop bit (8N1)
17
RS-422 (EIA-422) ANSI/TIA/EIA-422-B or ITU-T Recommendation T-REC-V.11 Uses differential signaling + GND 1 transmitter + 10 receivers 10 Mbit/s (12 m), 100 kbit/s (1200 m) Max. 1200 m Standard does not define protocol and pins
18
Differential signaling source: www.root.czwww.root.cz source: www.root.czwww.root.cz
19
RS-422 source: meteosat.pessac.free.frmeteosat.pessac.free.fr source: www.scantec.dewww.scantec.de Log. 0: V A – V B ≥ +0.2 V Log. 1: V A – V B ≤ -0.2 V
20
RS-485 ANSI/TIA/EIA-485 (1998) Uses differential signaling 32 transmitter + 32 receivers 10 Mbit/s (12 m), 100 kbit/s (1200 m) Max. 1200 m Standard does not define protocol and pins
21
RS-485 signaling Source: www.consultants-online.co.zawww.consultants-online.co.za source: www.sealevel.comwww.sealevel.com Log. 0: V A – V B ≥ +0.2 V Log. 1: V A – V B ≤ -0.2 V
22
RS-485 devices Source: www.root.czwww.root.cz Internally each node can have a transmitter and receiver, they are switched into high-impedance mode when not used
23
source: www.alciro.orgwww.alciro.org Half duplex
24
source: www.alciro.orgwww.alciro.org full duplex
25
Grounding source: hw.czhw.cz
26
Maximal speed source: hw.czhw.cz
27
RS-422 vs. RS-485 source: hw.czhw.cz
28
USB Universal serial bus (1995) Differential signaling (DATA +, DATA -) + power source: www.se7ensins.comwww.se7ensins.com source: en.wikipedia.orgen.wikipedia.org
29
USB specifications Max. 127 devices Superspeed – 5 Gbit/s (USB 3.0 - 2008) High Speed - 480Mbits/s (USB 2.0 - 1999) Full Speed - 12Mbits/s Low Speed - 1.5Mbits/s
30
USB signaling Uses NRZI (Non Return to Zero Invert) signaling host device Differential „1“: D+ greater than D- Differential „0“: D+ less than D- D+ D- Differential „1“: D+ > 2.8 V, D- < 0.3V Differential „0“: D- > 2.8 V, D+ < 0.3V
31
USB signaling source: www.tek.comwww.tek.com
32
Speed identification Full speed device source: www.beyondlogic.orgwww.beyondlogic.org
33
Speed identification Full speed device source: www.beyondlogic.orgwww.beyondlogic.org
34
Non Return to Zero Invert signaling "One" is represented by a transition of the physical level. "Zero" has no transition. source: en.wikipedia.orgen.wikipedia.org source: www.jbmelectronics.comwww.jbmelectronics.com
35
Ethernet – physical layer Standard IEEE 802.3 Max. length 100m 3 Mbit/s to 100 Gbit/s Differential signaling Signals TX+, TX-, RX+, RX- source: techpubs.sgi.comtechpubs.sgi.com
36
Ethernet – physical layer Logic levels (10BaseT - output) Log. 1 > +0.7 V Log. 0 < -0.7 V source: hw-server.comhw-server.com source: sigalrm.blogspot.comsigalrm.blogspot.com source: www.interfacebus.comwww.interfacebus.com
37
Ethernet – Manchester encoding source: en.wikipedia.orgen.wikipedia.org Encoding helps clock recovery
38
Ethernet – physical layer Ethernet data, showing MLT-3 encoding of bits. (used in e.g. 100BASE-TX) source: flickr.comflickr.com
39
Ethernet – Data Link Layer - frame synchronization source: communities.netapp.comcommunities.netapp.com
40
Ethernet – Data Link Layer - frame addresses source: communities.netapp.comcommunities.netapp.com
41
Ethernet – Data Link Layer - frame identifies what higher-level network protocol is being carried in the frame (example: TCP/IP) source: communities.netapp.comcommunities.netapp.com
42
Ethernet – Data Link Layer - frame data source: communities.netapp.comcommunities.netapp.com
43
Ethernet – Data Link Layer - frame Control checksum Cyclic redundancy check source: communities.netapp.comcommunities.netapp.com
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.