Presentation is loading. Please wait.

Presentation is loading. Please wait.

HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4 Prediction calculations……………………………………………………5.

Similar presentations


Presentation on theme: "HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4 Prediction calculations……………………………………………………5."— Presentation transcript:

1 HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4 Prediction calculations……………………………………………………5 Angular distributions………………………………………………………6,7  2 vs J´ ………………….………………………………………………………..8-10 Effects of inserting beta6 into the angular distribution one-step fit function……………………………………………………11-12 Two-color exp………………………………………………………………13 Br detection…………………………………………………………………14-18 Br* detection………………………………………………………………...19-27 H detection…………………………………………………………………..28-34 Updated: 10.10.2014

2 …PXP-140918,pxp; Lay:0; Gr:1 …….XLS-140916.xlsx KER/eV I(H*+Br*) I(H*+Br) HBr + */HBr + J´=J´´= 6 5 4 3 2 1 0 Integral values E(1)

3 …PXP-140918,pxp; Lay:1; Gr:2 I(H*+Br*)/I(H*+Br) J´ Comment; Minimum is of Interesting with respect to the comparison with the mass resolved spectra analysis. E(1)

4 …PXP-140918,pxp; Lay:2; Gr:3 I(HBr + /HBr + *)/I(H*+Br) J´ Virtually unchanged with J´(?) E(1)

5 I(H*+Br*) I(H*+Br) HBr + */HBr + Prediction calculations ½ <- ½ 3/2 <- 3/2 12 14 12 10 v + = …PXP-140918a,pxp; Lay:6; Gr:1; <= ……XLS-140918.xlsx, sheet: „KER I, II“ and „KER III,IV“; NB: conversion factor for KER = 3.23228e-5*(pix)**2 = KER(eV) KER/eV J´= J´´= 6 5 4 3 2 1 0 ? E(1)

6 …PXP-140918a,pxp; Lay:7; Gr:11; …PXP-140918a,pxp; Lay:8; Gr:12; E(0), H* + Br* J´=J´´= 6 5 4 3 2 1 0 E(0), H* + Br J´=J´´= 6 5 4 3 2 1 0   E(1)

7 HBr + (top peak)  …PXP-140918a,pxp; Lay:9; Gr:13; <= ……XLS-140916.xlsx, sheet: „Angle processing“ J´=J´´= 6 5 4 3 2 1 0

8 Now let´s evaluate  2 by fitting Fitting performed by Wang: H*+Br*: 140914 (files: fitting.pxp <= ….E1.pxp; system.xlsx) H*+Br:

9 J´ 22 I(HBr+;top peak) I(H*+Br*), I(H*+Br) E(1), VMI One-step analysis using  2 and  4 …PXP-140918a,pxp; Lay:13; Gr:17; <= XLS-140916.pxp: sheet: „Angle fits“ E(1)

10 Comments: Not a significant change in  2 with J´ for H*+Br* and H* + Br Larger parallel character in H*+Br* than in H* + Br Virtually purely parallel transition for HBr + (top peak) Slight decrease in  2 with J´ for HBr + (top peak)

11 J´ 22 I(H*+Br*), E(1), VMI One-step analysis using  2 and  4 …PXP-140918a,pxp; Lay:13; Gr:17; <= XLS-140916.pxp: sheet: „Angle fits“ E(1) Solid line obtained by fitting b2 and b4 only Broken line obtained by fitnning b2,b4 and b6 No significant change

12 E(1), H*+Br* J´startendchisqprogrADeltaAbeta2Deltab2beta4Delta b4Beta6Delta B6Gr:IGOR filewxwy 03330,00471685VMI1stepC0,422330,002471,48910,0166-0,347910,01710,0111290,021518fittingforV7502 13330,00165382VMI1stepC0,600170,001461,09870,00627-0,571730,00720,0629320,0089619fittingforV75657 23330,00223607VMI1stepC0,582090,007571,12620,07757-0,475290,008580,043290,010720fittingforV7363 33330,0015164VMI1stepC0,467350,00141,19680,0079-0,419090,008780,064369 21fittingforV7469 43330,00324096VMI1stepC0,55340,002051,1850,00972-0,428480,01080,0011280,013622fittingforV7575 53330,00268467VMI1stepC0,512610,001861,2770,00978-0,384270,01060,0276190,013423fittingforV8681 63330,00308189VMI1stepC0,505390,0021,16620,0103-0,403030,0116-0,0059720,014524fittingforV8787 J´startendchisqprogrADeltaAbeta2Deltab2beta4Delta b4Gr:IGOR filewywx 03330,00476353VMI1stepB0,422260,002431,48860,0163-0,347460,016818fitting250 13330,00466841VMI1stepB0,599580,002411,09570,0103-0,569380,011919fitting5756 23330,00357782VMI1stepB0,581690,002111,12410,00938-0,473610,010720fitting633 33330,00342875VMI1stepB0,466880,002061,19380,0116-0,416530,01321fitting694 43330,00324178VMI1stepB0,553390,002011,18490,00953-0,428430,010622fitting755 53330,00310821VMI1stepB0,512830,001961,27820,0103-0,385380,011223fitting816 63330,00310114VMI1stepB0,505440,001961,16650,0102-0,403270,011424fitting877 Adding beta6 has very little effect on beta2 and beta4 ….system.vhw-aka-140926-1.xlsx <= from Wang

13 Two-color experiments:

14 Two-color experiments Br detection:

15 Two color Br detection: E(1) pix …PXP-140918b.pxp; Lay:7, Gr:39 J´=J´´= 4 2 1 0

16 Two color, Br detection: E(1) KER(total) eV …PXP-140918b.pxp; Lay:10, Gr:42 J´=J´´= 4 2 1 0

17 Br peak= „The 1hv peak“ J´=J´´= 4 2 1 0 …PXP-140918b.pxp; Lay:8, Gr:40 Two color Br detection: E(1) 

18 22 Br peak= „The 1hv peak“ E(1), two color, Br detection One-step analysis using  2 and  4 J´ …PXP-140918b.pxp; Lay:9, Gr:41 Two color Br-detection:

19 Two-color experiments Br* detection:

20 J´=1 J´=2 J´=3

21 J´=J´´= 3 2 1 Two color, Br* detection (exp: 141006): E(1) …PXP-140918b.pxp; Lay:11, Gr:46 1hv 2hv

22 …PXP-140918b.pxp; Lay:12, Gr:48  …PXP-140918b.pxp; Lay:13, Gr:49 Two color, Br* detection (exp: 141006): E(1) 1hv J´=J´´= 3 2 1 J´=J´´= 3 2 1 2hv NO bgr correction

23 Two color, Br* detection (exp: 141006): E(1) 1hv J´ …PXP-140918b.pxp; Lay:14, Gr:50 2hv NO bgr correction Too high negative value ERGO: bgr needs to be considered

24 …PXP-140918b.pxp; Lay:13, Gr:49 Two color, Br* detection (exp: 141006): E(1) J´=J´´= 3 2 1 2hv NO bgr correction J´=1 J´=2

25 …PXP-140918b.pxp; Lay:13, Gr:49 Two color, Br* detection (exp: 141006): E(1) J´=J´´= 3 2 1 2hv NO bgr correction J´=3

26 Two color, Br* detection (exp: 141006): E(1) …PXP-140918bb.pxp; Lay:13, Gr:49 1st elimination2nd elimination

27 1st elimination 2nd elimination Two color, Br* detection (exp: 141006): E(1) …PXP-140918bb.pxp; Lay:14, Gr:50 2hv 1hv

28 Two-color experiments H detection:

29 E(1) Two color exp. H-detection: H detection, one color, 243.161 nm (H->->H* resonance) H detection, one color, 249.48 nm (J´´=0->->J´=0 resonance: 80166.3 cm-1) Two-color, 1) 249.48 nm (HBr resonance excitation) 2) 243.161 nm H resonance excitation, …PXP-140918c.pxp; Lay:0, Gr:14 KER(total) eV

30 E(1) Two color exp., H-detection: One color, H detection, 249.48 nm (J´´=0->->J´=0 resonance: 80166.3 cm-1) Two-color, 1) 249.48 nm (HBr resonance excitation) 2) 243.161 nm H resonance excitation, Two color – one color …PXP-140918c.pxp; Lay:1, Gr:15 KER(total) eV

31 E(1) Two color exp., H-detection: …PXP-140918c.pxp; Lay:1, Gr:15; ….XLS-140918a.xlsx; sheet: KERa,hv,Br (prediction calc.) H detection, one color, 243.161 nm (H->->H* resonance) Two color – one color Prediction calculations J´=0 J´=0-6 KER(total) eV

32 E(1) Two color exp., H-detection: subtraction attempt(?????): Two color – one color H detection, one color, 243.161 nm (H->->H* resonance) …PXP-140918c.pxp; Lay:3, Gr:17; ….XLS-140918a.xlsx; sheet: KERa,hv,Br (prediction calc.) Difference spectrum after scaling the „subspectra „below. Could the difference spectrum be a sum of two contributions? -One for dissociation of HBr* -One for dissociation of HBr+ KER(total) eV

33 Now perform prediction calculation for KER(H) for HBr+ -> H + Br+

34 E(1) Two color exp., H-detection: Two color – one color H detection, one color, 243.161 nm (H->->H* resonance) …PXP-140918c.pxp; Lay:3, Gr:17; ….XLS-140918b.xlsx; sheet: KER,I,II(prediction calc.) Difference spectrum after scaling the „subspectra „below. KER(total) eV V+=0 1 2 3 4 5 6 7 Prediction calculation for H + Br+ formation for hv + HBr+(v+) -> H+ + Br vs. v+, J´=0


Download ppt "HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4 Prediction calculations……………………………………………………5."

Similar presentations


Ads by Google