Download presentation
Presentation is loading. Please wait.
Published byLucas Bricker Modified over 9 years ago
1
VB Standortcharakterisierung (Cluster B: soil) Wulf Amelung, Kurt Heil, Andreas Pohlmeier, Stefan Pätzold, Urs Schmidhalter, Lutz Weihermüller, Gerd Welp
2
„Soil phenotyping“ to improve breeding Field experiments must verify breeding success But sites are never homogeneous Unexplained variances reduce breeding success e 2 Soil Sensing Optimization of crop management, Optimizing sampling schemes, Explaining plant stress
3
N min : 22-90 kg ha -1 Yield: 6.1-9.8 t ha -1 Site heterogeneities: e.g. site for central experiments 3?
4
Optical sensors 4 B1: Mapping of soil properties Texture Corg Nt CEC Water content VIS-NIRS (mobile) VIS-NIRS (stationary) Electromagnetic sensors Capacitive sensors EM38 EM38-MK2 EnviroScan Deviner
5
5
6
Area, N ToolMode, coil distance Dependent variable EquationAdj. R 2, Sign. A15 N = 12 EM38V 1,0 m Clay 1/clay = 3,06+1/ECa0,82*** H 1,0 m1/clay = 2,29 + 49,01*1/ECa0,78*** EM38- MK2 V 1,0 m1/clay = 2,23+51,74*1/ECa0,87*** H 1,0 m√clay = 0,26+0,04*√ECa0,45** V 0,5 mClay = 0,15+0,004*ECa0,68*** H. 0,5 m√clay = 0,256+0,05*√ECa0,51*** EM38V 1,0 m Silt H 1,0 m EM38- MK2 V 1,0 m1/silt = 1,48+2,32*1/ECa0,76*** H 1,0 m V 0,5 m H. 0,5 m EM38V 1,0 m Sand+ Skeleton √(Sand+Skeleton) = 0,51+1,09*1/ECa0,59*** H 1,0 m(Sand+Skeleton) = 0,19+3,75*1/ECa0,54*** EM38- MK2 V 1,0 m√(Sand+Skeleton) = 0,47+2,29*1/ECa0,64*** H 1,0 m V 0,5 m (Sand+Skeleton) = 0,24+2,36*1/ECa 0,32** H. 0,5 m
7
7 B1: Mapping of soil variety (4 weeks little rain) Site Dürnast
8
8 B1: Mapping of yield variety High relevance for improving breeding success Digital maps of (static) soil heterogneity => Quantitative mapping of water contents?
9
9 B3: Quantitative EMI? Robinson et al. (2004) Nüsch et al. (2010) Calibration needed by Electrical Resistivity Tomography (ERT) Direct Push Injection Logger (DPIL) Cone Penetration Test (CPT) Capacity sensors or TDR After calibration: good estimation of water contents (R² = 0.87; 0-90cm)
10
10 ECa Measurements – Scheyern Quantitative vertical and horizontal changes are well reproduced by ECa 3-layer inversion
11
11 ECa Measurements – Klein Altendorf HCP 1.0 m (0-1.6 m)VCP 1.0 m (0-0.8 m)HCP 0.5 m (0-0.7 m)VCP 0.5 m (0-0.3 m) Excellent recordings of physical soil properties => Relevance for plant water uptake?
12
12 B4: NMR relaxometry and MRI
13
Brownstein-Tarr equation 13
14
Original MRI of barley in Klein-Altendorf (uL) Mathematical Reconstruction of root architecture Modelling of water uptake Soil parametes of B1- B3 Spatial assessment of root water uptake => No nutrients?
15
B1: NIRS reflectance 15 NMeanRangeErrorR2R2 C t %459.227.24 - 9.990.090.68 C carb % 455.823.74 - 6.810.090.75 N t %450.410.14 - 0.500.0070.62 Laboratory Clay content: R² = 0.84 - 0.90 C org, C inorg, N t : R² = 0.88 – 0.93 Field Methods (B1, B3): Mathematic derivation of soil properties from spectral data (PLS, SVM)
16
B3: Corg after local calibration Arable soils, Germany (n=68) Bornemann et al., 2010, 2011; SSSAJ In the meantime Clay content, Fe-content, carbonate content CEC C org, N t Particulate C Available phosphate R² = 0.88-0.99
17
Chamber box design for the field Rodionov et al., 2014a; STILL
18
18 SOC-prediction depends on soil moisture and roughness Rodionov et al., 2014b; SSSAJ
19
19 Rodionov et al., 2014b; SSSAJ Predictions with variable moisture and roughness
20
20 VIS-NIRS on-the-go (3 km h -1 ) But this is all surface sensitive (2 mm) => Extrapolation to deeper soil?
21
Hilberath (arable field) 21 Gamma ≤ 0.4 m
22
Relation 40 K-counts / Sand 22 Unexpected correlations with mineralogy
23
Outlook: Flight campaigns 23
24
Dank 24 … and we could reduce costs by over 700 Lire if we do not assess the ground -BMBF -MIWFT
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.