Download presentation
Presentation is loading. Please wait.
1
Counters Discussion D8.3
2
Counters Divide-by-8 Counter Behavioral Counter in Verilog
Counter using One-Hot State Machine
3
Divide-by-8 Counter A state diagram for a divide by 8 counter
4
Divide-by-8 Counter s0 0 0 0 0 0 1 s1 0 0 1 0 1 0 s2 0 1 0 0 1 1
State Q2 Q1 Q D2 D1 D0 Present state Next state A state-transition table
5
Divide-by-8 Counter s0 0 0 0 0 0 1 s1 0 0 1 0 1 0 s2 0 1 0 0 1 1
State Q2 Q1 Q D2 D1 D0 Present state Next state Q0 Q1 Q2 D0 D1 D2
6
Divide-by-8 Counter s0 0 0 0 0 0 1 s1 0 0 1 0 1 0 s2 0 1 0 0 1 1
Q1 Q0 s s s s s s s s State Q2 Q1 Q D2 D1 D0 Present state Next state 00 01 11 10 Q2 1 1 1 1 1 D2 D2 = ~Q2 & Q1 & Q0 | Q2 & ~Q1 | Q2 & ~Q0
7
Divide-by-8 Counter s0 0 0 0 0 0 1 s1 0 0 1 0 1 0 s2 0 1 0 0 1 1
State Q2 Q1 Q D2 D1 D0 Present state Next state Q1 Q0 00 01 11 10 Q2 1 1 1 1 1 D1 D1 = ~Q1 & Q0 | Q1 & ~Q0
8
Divide-by-8 Counter s0 0 0 0 0 0 1 s1 0 0 1 0 1 0 s2 0 1 0 0 1 1
State Q2 Q1 Q D2 D1 D0 Present state Next state Q1 Q0 00 01 11 10 Q2 1 1 1 1 1 D0 D0 = ~Q0
9
Divide-by-8 Counter A Divide by 8 counter Circuit using D Flip-flops
10
module DFF (D, clk, clr, Q);
input clk ; wire clk ; input clr ; wire clr ; input D ; wire D ; output Q ; reg Q ; clk or posedge clr) if(clr == 1) Q <= 0; else Q <= D; endmodule
11
Q0 Q1 Q2 D0 D1 D2 module count3 ( Q ,clr ,clk ); input clr ;
wire clr ; input clk ; wire clk ; output [2:0] Q ; wire [2:0] Q ; wire [2:0] D ; assign D[2] = ~Q[2] & Q[1] & Q[0] | Q[2] & ~Q[1] | Q[2] & ~Q[0]; assign D[1] = ~Q[1] & Q[0] | Q[1] & ~Q[0]; assign D[0] = ~Q[0]; DFF U2(.D(D[2]), .clk(clk), .clr(clr), .Q(Q[2])); DFF U1(.D(D[1]), .clk(clk), .clr(clr), .Q(Q[1])); DFF U0(.D(D[0]), .clk(clk), .clr(clr), .Q(Q[0])); endmodule Q0 Q1 Q2 D0 D1 D2
12
count3 Simulation
13
Counters Divide-by-8 Counter Behavioral Counter in Verilog
Counter using One-Hot State Machine
14
3-Bit Counter Behavior clr count3 Q(2 downto 0) clk
clk or posedge clr) begin if(clr == 1) Q <= 0; else Q <= Q + 1; end
15
counter3.v module counter3 (clk, clr, Q ); input clr ; wire clr ;
input clk ; wire clk ; output [2:0] Q ; reg [2:0] Q ; // 3-bit counter clk or posedge clr) begin if(clr == 1) Q <= 0; else Q <= Q + 1; end endmodule Asynchronous clear Output count increments on rising edge of clk
16
counter3 Simulation
17
Recall Divide-by-8 Counter
Q0 Q1 Q2 D0 D1 D2 s s s s s s s s State Q2 Q1 Q D2 D1 D0 Present state Next state Use Q2, Q1, Q0 as inputs to a combinational circuit to produce an arbitrary waveform.
18
Example State Q2 Q1 Q D2 D1 D y Q2 Q1 Q0 00 01 11 10 1 s s s s s s s s y = ~Q2 & ~Q1 | Q2 & Q0
19
Counters Divide-by-8 Counter Behavioral Counter in Verilog
Counter using One-Hot State Machine
20
One-Hot State Machines
Q0 Q1 Q2 D0 D1 D2 Instead of using the minimum number of flip-flops (3) to implement the state machine, one-hot encoding uses one flip-flop per state (8) to implement the state machine.
21
Why use One-Hot State Machines?
Using one-hot encoding or one flip-flop per state (8) will normally simplify the combinational logic at the expense of more flip-flops. Let's see how for the 3-bit counter
22
One-Hot Encoding Think of each state as a flip-flop s0 0 0 0 s1
Present state Next state State Q2 Q1 Q D[0:7] Think of each state as a flip-flop s s1 s s2 s s3 s s4 s s5 s s6 s s7 s s0 D[i] = s[i-1] This is just a ring counter!
23
3-bit Counter State Q2 Q1 Q0 s s s s s s s s Q2 = s4 | s5 | s6 | s7 Q1 = s2 | s3 | s6 | s7 Q0 = s1 | s3 | s5 | s7
24
module cnt3hot1(clk,clr,Q);
input clk; input clr; output [2:0] Q; wire [2:0] Q; reg [0:7] s; // 8-bit Ring Counter clk or posedge clr) begin if(clr == 1) s <= 8'b ; else s[0] <= s[7]; s[1:7] <= s[0:6]; end // 3-bit counter assign Q[2] = s[4] | s[5] | s[6] | s[7]; assign Q[1] = s[2] | s[3] | s[6] | s[7]; assign Q[0] = s[1] | s[3] | s[5] | s[7]; endmodule
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.