Download presentation
Presentation is loading. Please wait.
Published byCheyanne Eells Modified over 9 years ago
1
In vitro biochemical circuits Leader: Erik Winfree co-leader: Jongmin Kim 1.The synthetic biology problem 2.The experimental system we are investigating 3.A general problem it motivates 4.A specific problem to tackle
2
In vitro biochemical circuits Leader: Erik Winfree co-leader: Jongmin Kim 1.The synthetic biology problem Reductionism: system behavior from component characteristics The complexity gap Synthesis of in vitro biochemical circuits 2.The experimental system we are investigating 3.A general problem it motivates 4.A specific problem to tackle
3
In vitro biochemical circuits Leader: Erik Winfree co-leader: Jongmin Kim 1.The synthetic biology problem 2.The experimental system we are investigating Circuits of rationally-designed transcriptional switches 3.A general problem it motivates 4.A specific problem to tackle ? RNase RNA DNA RNAP promoter DA R A I R [R] [A] tot [I] tot
4
1.The synthetic biology problem 2.The experimental system we are investigating 3.A general problem it motivates There are many subspecies and side reactions. How do we obtain a simplified model for analysis? 4.A specific problem to tackle By RNA polymerase ON OFF In vitro biochemical circuits Leader: Erik Winfree co-leader: Jongmin Kim By RNase
5
In vitro biochemical circuits Leader: Erik Winfree co-leader: Jongmin Kim 1.The synthetic biology problem 2.The experimental system we are investigating 3.A general problem it motivates 4.A specific problem to tackle Phase space analysis of simple circuits: a bistable switch and a ring oscillator 1 0 0 1 10 e.g. “cloud size”
6
Mass action chemical kinetics
7
An adjustable transcriptional switch
8
Networks of transcriptional switches By RNA polymerase ON OFF By RNase
9
Michaelis-Menten reactions Michaelis-Menten reactions lead to competition for - RNA polymerase by DNA templates - RNase by RNA products Can have interesting consequences like Winner-take-all network
10
Experimental system
11
Sequence design TCATGGAACTACAACAGGCAACTAATACGACTCACTATAGGGAGAAGCAACGATACGGTCTAGAGTCACTAAGAGTAATACAGAACTGACAAAGTCAGAAA GCTGAGTGATATCCC TC TTCG TTGCTATG CCAGATCTCAGTGATTCT CATTAT GTCTTGACTG TTTC AGTCTTTGTGTTCCT AGTACCTTGATGTT GTCCGTTGATTAT Promoter 85 27 hairpin AGCAACGATACGGTCTAGAGTCACTAAGAGTAATACAGAA AAA GGGAGA CTGAC GTCAG A A A 6 827 Signal
12
Components RNAP RNase H RNase R D 12 D 21 A2A2 A1A1 ATTGAGGTAAGAAAGGTAAGGATAATACGACTCACTATAGGGAGAAACAAAGAACGAACGACACTAATGAACTACTACTACACACTAATACTGACAAAGTCAGAAA CTAATGAACTACTACTACACACTAATACGACTCACTATAGGGAGAAGGAGAGGCGAAGATTGAGGTAAGAAAGGTAAGGATAATACTGACAAAGTCAGAAA TATTAGTGTGTAGTAGTAGTTCATTAGTGTCGTTC TATTATCCTTACCTTTCTTACCTCAATCTTCGCCT TTTCTGACTTTGTCAGTATTATCC TT ACC TTT C TT ACCTCAATCTTCGCCTCTCCTTCTCCCTATAGTGAGTCG TTTC TGACTTTGTCAGTATTAGTGTGTAGTAGTAGTTCATTAGTGTCGTTCG TTCTTTGTTTCTCCCTATAGTGAGTCG
13
Transition curve – DNA inhibitor T7 RNAP RNase H(1U) RNase R(200nM) D 21 =100nM A=500nM Sw21 Inh1 Inh2 add DNA Inhibitor 2 A tot dI1 I2
14
Transition curve – RNA inhibitor T7 RNAP RNase H(0.7U) RNase R(150nM) D 13 =0-60nM D 21 =80nM A=400nM A tot Inhibitor 2 Inhibitor 1 Sw21 Sw13 Inh2 Inh1 I2 I1
15
Fluorescence OFF ON High signal Low signal
16
Bistable switch Inh 2 Inh 1 Sw 21 Sw 12
17
Bistable switch Sw 12 ON Sw 21 ON
18
Summary Need better quantitative understanding -make a better system -understand how messy system works Cells have misfolded, mutated species all the time Neural networks have distributed architecture
19
Possible complications
20
Inhibitor interacting with Switch/Enzyme complex D A I RNAP I + RDA -> RD + AI I A D RNAP
21
Abortive transcripts (Messiness #1) D RNAP A D A I R + DA RDA -> R + DA + I 60, I 45, I 14,I 8
22
RNase R needs to clean up I 8, I 14 RNase R Rr + I n RrI n -> Rr
23
Activator crosstalk D 21 A2A2 A2A2 D 21 + A 2 -> D 21 A 2
24
Nicked at -12/-13 has no crosstalk I2I2 A 1 or A 2 D 21 Stoichiometric amounts of activator Transcription level (%) spnonspnon 1x0x1x2x3x1x0x1x2x3x 1002824 10010 119 T7 RNAP D 21 =100nM, 500nM D 21 +A 1 D 21 D 21 +A 2
25
Incomplete degradation by RNaseH (Messiness #2) I 45 A hp RNase H A I RhAI -> Rh + A + I n + hp
26
RNase H can keep going I 45 A RNase H I 27 A RNase H I 14 A RNase H Rh + AI n RhAI n -> Rh + AI m I 27 A I 14 A RNase H
27
Lots of truncated RNA products I2 I2 hairpin ? R(0nM)R(100nM)R(200nM)R(400nM) D 21 =30nM A=150nM T7 RNAP RNase H(1.5U) RNase R 60120 60180 12060 180 Sw21 Inh2 sI2
28
Activator-activator or Inhibitor- inhibitor complex II I I I + I -> II
29
RNA extension by RNAP RNAP I I’ RNAP R + I -> RI -> R + I’
30
Extended RNA species R(0nM)R(100nM)R(200nM)R(400nM) D 21 =30nM A=150nM T7 RNAP RNase H(1.5U) RNase R 60120 60180 12060 180 Sw21 Inh2 Extended I2 complex I2
31
Enzyme life-time RNAP R -> ø
32
NTP/buffer exhaustion D RNAP A D A I ATP GTP CTP UTP RDA + 60NTP -> R+ DA + I
33
I2 level is stable (up to ~6hr) R(0nM)R(100nM)R(200nM)R(400nM) D 21 =30nM A=150nM T7 RNAP RNase H(1.5U) RNase R 60120 60180 12060 180 Sw21 Inh2 I2
34
RNase degrading DNA A RNase H Rh + A -> RhA -> Rh
35
DNA bands are stable R(0nM)R(100nM)R(200nM)R(400nM) D 21 =30nM A=150nM T7 RNAP RNase H(1.5U) RNase R 60120 60180 12060 180 Sw21 Inh2 DNA sense DNA temp BH-A
36
Initial burst D RNAP A D A I RDA -> R + DA + I k(t)
37
Model choice (basic) D + A DA A + I AI DA + I DAI -> D + AI R + DA RDA -> R + DA + I R + D RD -> R + D + I Rh + AI RhAI -> Rh + A Rr + I RrI -> Rr
38
Model choice (with messiness) D + A DA A + I n AI n DA + I n DAI n D + AI n R + DA RDA -> R + DA + I n R + DAI 1 n RDAI 1 n -> R + DAI 1 n + I 2 n’ R + D RD -> R + D + I n Rh + AI n RhAI n -> Rh + AI m (+ hp) Rr + I n RrI n -> Rr
39
Questions Bistable circuit phase diagram Oscillator circuit phase diagram Bistable circuit model reduction Oscillator circuit model reduction Transcription switch input/output model reduction
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.