Download presentation
Presentation is loading. Please wait.
Published byMonique Soldan Modified over 9 years ago
1
The Delicate Balance of Hydrogen Bond Forces in D-Threoninol 19 Di Zhang, Vanesa Vaquero Vara, Brian C. Dian and Timothy S. Zwier Zwier Research Group, Purdue University
2
HO – CH 2 – CH – CH – OH – CH 3 – NH 2 (S) Artificial ¨DNA¨: Acyclic threoninol nucleic acid (aTNA)* Threonine *H. Kashida et al., Angew. Chem. Int. Ed. 2011, 50, 1285 D-Threoninol: Reduced form of D-Threonine 20
3
D-Threoninol: Evolution of the structure HO – CH 2 – CH 2 – OH (1) HO – CH 2 – CH 2 – CH – OH (3) – CH 3 W. Caminati et al., J. Mol. Struct. 1982, 78, 197 HO – CH 2 – CH 2 – CH 2 – OH (2) W. Caminati et al., J. Mol. Spectr. 1995, 171, 394 W. Caminati et al., J. Mol. Spectr. 1981, 90(2), 572 ? HO – CH 2 – CH – CH – OH – CH 3 – NH 2 (S) 21 HO – CH 2 – CH– CH 2 – OH (2) OH – V. Ilyushin et al. J. Mol. Spectr. 2008, 251, 129
4
Calculational Methods 1.Force field calculation in Amber * force field was performed first at low computational cost with MacroModel commercial program suite. 2.85 stable conformation structures were filtered out with a given energy threshold (50kJ mol -1 ). 3.Full geometry optimizations were performed using MP2 with 6-311++G(d,p) basis set.
5
Predicted lower energy conformers and relative energies with respect to the global minimum cw ccw
6
1)Pulse Generation 2)Molecular Interaction 3)Detection instrumentation
7
Rotational spectrum of D-threoninol from 7.5-18.5 GHz
8
Predicted lower energy conformers and relative energies with respect to the global minimum cw ccw
9
Hyperfine structures with their respective 2 2,0 ← 1 1,1 rotational transitions
10
Hyperfine structures with their respective 3 1,3 ← 2 1,2 rotational transitions
11
Hyperfine structures with their respective 5 1,4 ← 4 1,3 rotational transitions
12
Hyperfine structure with its respective 5 1,4 ← 4 1,3 rotational transition
13
cyclechain 1→3→2 1→2→3 3→2→1 MP2/6-311++G(d,p) cyclechain 1→3→2 3→2→1 1→2→3 2→1→3 MP2/aug-cc-pVTZ V.V.Ilyushin et al. J.Mol.Spec. 251 (2008) 129 ① ② ③ ① ② ③ Conclusions ① Substituted alkyl chains allow the formation of networks of intramolecular hydrogen bonds ② Cycles are lowest in energy in both tri-substituted cases ③ Chains are only slightly higher in energy Observe several chain conformers Near energies Compensation between 3 weak H bonds and 2 strong H bonds ④ Presence of NH 2 : a)Better H-bond acceptor b)Poorer H-bond donor H-bond length Distorted structure 2.34Å 2.35Å 2.08Å 2.28Å2.17Å 2.57Å 2.17Å 2.12Å
14
Prof. Tim Zwier Dr. Vanessa Vaquero Vara Dr. Ryoji Kusaka Evan G. Buchanan Zachary Davis James Redwine Jacob Dean Deepali Mehta Nathan Kidwell Di Zhang Joe Korn Nicole Shimko Patrick Walsh Joseph Gord Acknowledgments
15
Conclusions I Observed 7 conformers of D-threoninol Two hydrogen bonded cycles Five hydrogen bonded chains Rotational constants A,B,C provide information on the conformation of the molecules Quadrupole coupling constants χ gg (g= a,b,c) provide a different and independent way to identify different conformers
16
III +sc -sc 402 cm -1 406 cm -1 *Zero point corrected energies at MP2/6-311++G(d,p) Predicted lower energy conformers and relative energies with respect to the global minimum
17
MP2/6- 311+G(d,p) 3exp1 23exp10exp19exp13exp5 A (MHz)39413904.0776(11)39243902.91475(69)35123513.6913( 68)46184584.7856 (84)34613482.3760(53)41944171.1102(27)45504525.06(42) B (MHz)19361931.92598(97)19451938.4299(12)20642037.0863(20)15791568.39713(89)20702026.9310(23)17321722.4785(13)15831570.2817(21) C (MHz)17091701.1088(13)17041693.2639(11)15281515.8920( 32)14801472.17944(76)15231507.3793(25)13081301.6872(17)14631460.1230(20) Δ (kHz)0.178(28)0.167(30)-0.301( 67)0.309(49)0.212(25) Configuration +sc –sc II 3 +sc –sc I 3 +sc I 2 -sc –sc I 2 +sc II 2 -sc +sc I 2 -sc –sc II 2
18
MP2/6- 311+G(d,p) 7439271194212 1614 A (MHz)34633503349545894565388137824186 41494171 B (MHz)20502054200715671571198819871733 17141716 C (MHz)16351524149814711454166916901310 13011304 Configuration+sc -sc +sc -sc -sc +sc
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.