Download presentation
Presentation is loading. Please wait.
Published byCourtney Carter Modified over 9 years ago
1
Programming for Artists ART 315 Dr. J. R. Parker Art/Digital Media Lab Lec 13 Fall 2010
2
Functions – last time we looked at how to define a function of our own. A function is a module, a small section of code that computes something useful in the context of our problem. It may take parameters, can define its own variables, and can be called (invoked) from anywhere in the program. What now?
3
Functions should have a single well-defined thing that they do. Built-in functions are a good example: abs() ceil() constrain() dist() exp() floor() lerp() log() mag() map() max() min() norm() pow() round() sq() sqrt() min() norm() pow() round() sq() sqrt() Trigonometry acos() asin() atan() atan2() cos() degrees() radians() sin() tan() degrees() radians() sin() tan() Random noise() random() All of these do one thing
4
4 Function: max Description: Determines the largest value in a sequence of numbers. max(value1, value2, value 3) Let’s write a max function for floats
5
5 Function: max float mymax (float a, float b, float c) Returns an integer, which will be one of the three values passed to it. Name of the function Three parameters. This function finds the largest one and returns that as a value.
6
6 Function: max float mymax (float a, float b, float c) { if ( (a>=b) && (a>=c) ) return a; if ( (b>=c) && (b>=a) ) return b; return c; } RETURN means use this value as the value of this function this time and go back to where it was called.
7
7 Function: max How do we know that it works? Well, lets give it some numbers and print out the answer.
8
8 Function: max Let’s give it some numbers and print out the answer. void draw ( ) { float a=21, b=63, c=12; print ("Max of "); print (a); print (" "); print(b); print (" "); print (c); print (" is "); println (mymax(a, b, c)); } float mymax (float a, float b, float c) { if ( (a>=b) && (a>=c) ) return a; if ( (b>=c) && (b>=a) ) return b; return c; }
9
9 Function: max Let’s give it some numbers and print out the answer.
10
10 Function: max Let’s give it some numbers and print out the answer. void draw ( ) { float a=21, b=63, c=12; print ("Max of "); a = random (-100, 100); print (a); print (" "); b = random(-100, 100); print(b); print (" "); c = random(-100, 100); print (c); print (" is "); println (mymax(a, b, c)); } float mymax (float a, float b, float c) { if ( (a>=b) && (a>=c) ) return a; if ( (b>=c) && (b>=a) ) return b; return c; }
11
11 Function: max Let’s give it some numbers and print out the answer.
12
12 Function: distance float distance (float x1, float y1, float x2, flat y2) { float d=0.0; d = (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2); d = sqrt (d); return d; } Calculates the distance between point (X1,Y1) and the point (X2,Y2). It calculates the hypotenuse of the right triangle. x1,y1 x2,y2
13
void draw ( ) { float x1,x2,y1,y2; print ("Distance from ("); x1 = random (0, 100); y1=random(0,100); print (x1); print (","); y1 = random(0, 100); print(y1); print (") to ("); x2 = random (0, 100); y2=random(0,100); print (x2); print (","); print(y2); print (" is "); println (distance(x1,y1,x2,y2)); } float distance (float x1, float y1, float x2, float y2) { float d=0.0; d = (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2); d = sqrt (d); return d; }
15
15 Functions VOID functions do not return a single value, but do perform calculations that are needed for the overall program. Changes are made to global variables or to parameters. Allows us to organize the program into smaller units.
16
Modularity in Drawing
17
A basic unit void drawFraction(int gray,int x1,int y1,int x2,int y2,int x3, int y3, int x4, int y4) { stroke(gray); quad(x1,y1,x2,y2,x3,y3,x4,y4); }
20
20 Functions //creating block method through initialising multiple drawFraction methods. void block(int var,int xpos,int ypos) { drawFraction(gray+var,100+xpos,100+ypos,300+xpos,100+ypos,300+xpos,300+ypos,100+xpos,300+ypos); drawFraction(gray+var,90+xpos,110+ypos,290+xpos,110+ypos,310+xpos,290+ypos,110+xpos,290+ypos); drawFraction(gray+var,80+xpos,120+ypos,280+xpos,120+ypos,320+xpos,280+ypos,120+xpos,280+ypos); drawFraction(gray+var,70+xpos,130+ypos,270+xpos,130+ypos,330+xpos,270+ypos,130+xpos,270+ypos); drawFraction(gray+var,60+xpos,140+ypos,260+xpos,140+ypos,340+xpos,260+ypos,140+xpos,260+ypos); drawFraction(gray+var,50+xpos,150+ypos,250+xpos,150+ypos,350+xpos,250+ypos,150+xpos,250+ypos); drawFraction(gray+var,40+xpos,160+ypos,240+xpos,160+ypos,360+xpos,240+ypos,160+xpos,240+ypos); drawFraction(gray+var,30+xpos,170+ypos,230+xpos,170+ypos,370+xpos,230+ypos,170+xpos,230+ypos); drawFraction(gray+var,20+xpos,180+ypos,220+xpos,180+ypos,380+xpos,220+ypos,180+xpos,220+ypos); drawFraction(gray+var,10+xpos,190+ypos,210+xpos,190+ypos,390+xpos,210+ypos,190+xpos,210+ypos); drawFraction(gray+var,0+xpos,200+ypos,400+xpos,200+ypos,200+xpos,200+ypos,200+xpos,200+ypos); drawFraction(gray+var,190+xpos,190+ypos,390+xpos,190+ypos,210+xpos,210+ypos,10+xpos,210+ypos); drawFraction(gray+var,180+xpos,180+ypos,380+xpos,180+ypos,220+xpos,220+ypos,20+xpos,220+ypos); drawFraction(gray+var,170+xpos,170+ypos,370+xpos,170+ypos,230+xpos,230+ypos,30+xpos,230+ypos); drawFraction(gray+var,160+xpos,160+ypos,360+xpos,160+ypos,240+xpos,240+ypos,40+xpos,240+ypos); drawFraction(gray+var,150+xpos,150+ypos,350+xpos,150+ypos,250+xpos,250+ypos,50+xpos,250+ypos); drawFraction(gray+var,140+xpos,140+ypos,340+xpos,140+ypos,260+xpos,260+ypos,60+xpos,260+ypos); drawFraction(gray+var,130+xpos,130+ypos,330+xpos,130+ypos,270+xpos,270+ypos,70+xpos,270+ypos); drawFraction(gray+var,120+xpos,120+ypos,320+xpos,120+ypos,280+xpos,280+ypos,80+xpos,280+ypos); drawFraction(gray+var,110+xpos,110+ypos,310+xpos,110+ypos,290+xpos,290+ypos,90+xpos,290+ypos); }
21
21 Functions Details of this particular function are less important than the overall lesson: That a complex drawing task can be broken into simpler, logical units using functions. The parameters of the function can be used to draw, for example, repeated versions of a simple shape in many positions/colors over the image/canvas.
22
22 Functions New one (probably simpler) Let’s write a function that draws a black circle. // Black circle. void blackCircle ( int x1, int y1 ) { stroke(0); fill (0); ellipseMode(CENTER); ellipse (x1,y1,circleSize, circleSize); } void whiteCircle ( int x1, int y1 ) { stroke(0); fill (255); ellipseMode(CENTER); ellipse (x1,y1,circleSize, circleSize); } And a white one.
23
23 Functions Now let’s draw a checkerboard (getting the idea??) void board () { int i,j; for (i=0; i<8; i++) { for (j=0; j<8; j++) { if (k==0) fill (139,69,19); else fill (139, 115, 85); k = 1-k; rect (40+i*30, 40+j*30, 30, 30); } k = 1-k; }
24
24 Functions Now let’s draw a checkerboard (getting the idea??) Squares are at 30 unit Distances starting at (40,40). Now let’s put checkers on the board. White ones on top 3 rows, dark squares.
25
25 Functions Now let’s draw a checkerboard (getting the idea??) void placeWhite () { int i=0; for (i=0; i<4; i++) whiteCircle (70+i*60, 40); for (i=0; i<4; i++) whiteCircle (40+i*60, 70); for (i=0; i<4; i++) whiteCircle (70+i*60, 100); } void placeBlack () { int i=0; for (i=0; i<4; i++) blackCircle (40+i*60, 190); for (i=0; i<4; i++) blackCircle (70+i*60, 220); for (i=0; i<4; i++) blackCircle (40+i*60, 250); }
26
26 Checkerboard void draw() { board(); placeWhite(); placeBlack (); }
27
27 Principles Functions are used to create logical modules Complex programs are built from these simpler units. Functions should implement a simple operation. Functions need to be appropriately named.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.