Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 The SZE in the SKA & MILLIMETRON Era. The SZE: Physics high-energy photon Internal High-E electrons - thermal (supra-thermal) - relativistic ↑ Use CMB.

Similar presentations


Presentation on theme: "1 The SZE in the SKA & MILLIMETRON Era. The SZE: Physics high-energy photon Internal High-E electrons - thermal (supra-thermal) - relativistic ↑ Use CMB."— Presentation transcript:

1 1 The SZE in the SKA & MILLIMETRON Era

2 The SZE: Physics high-energy photon Internal High-E electrons - thermal (supra-thermal) - relativistic ↑ Use CMB photons to extract plasma information Use CMB photons to extract plasma information

3 The SZE: manifestations SZE polarization SZ DM SZ kin SZ warm SZ th SZE Intensity 5 keV 20 keV SZ rel depends on f e (p) and I CMB vectorial depends on f e (p) and I CMB scalar

4 SZE: multi- Astro Physics SPT MUSTANG OVRO Accessible from Space Independent of astrophysics Strongly dependent on astrophysics kT= 7 keV kT=10 keV kT=15 keV kT=20 keV Sensitive to CMB Insensitive to CMB Need: wide- coverage (≈10 - 800 GHz) sensitivity (<  K) Imaging (arcsec)

5 Exploiting SZE information [DeBernardis, Colafrancesco et al. 2012] Different spectroscopic configurations for studying the SZE in cosmic structures SZ th SZ non-th SZ kin Foreground

6 Exploiting SZE information [DeBernardis, Colafrancesco et al. 2012] EC2 3m passive EC3 12m passive EC5 12m active Different spectroscopic configurations for studying the SZE in cosmic structures PLANCK SPT Herschel OLIMPO Millimetron PLANCK

7 Millimetron cold DFTS, cold telescope (4K) on a satellite in L2 (de Bernardis, S.C. et al. 2012) SZE: parameter extraction 1 hour

8 OLIMPO: warm DFTS, warm telescope on a balloon (de Bernardis, S.C. et al. 2012) SZE: parameter extraction 3 hours

9 SZE: best frequency bands 5-30 GHz 100-1000 GHz DFTS (baseline) Band 1Band 2Band 3Band 4 Frequency (GHz)100–200130–350350–700700–1000 FWHM (arcmin)1.31.00.360.18 # of independent beams/detectors 6/249/3616/4825/100 Background (pW)5.48.29.77.8 Detector NEP (aW s 1/2 ) 18 6.01.2 Spectral Resolution (GHz) 1.25 Spectral sensitivity (aW s 1/2 /GHz) 8.78.62.90.95 Square Kilometer Array Spektr-M 10 4 0.1

10 SZE: frequency & sensitivity VLA E-VLA MerKAT SKA-P1 SKA-P2 Square Kilometer Array Spektr-M 10 -17 W Hz -1/2 10 -18 10 -19

11 SZE: MILLIMETRON (10 2 - 10 3 GHz) Cluster physics characterization Thermal, non-thermal pressure stratification Multiple components Relativistic plasma physics (thermal, non-thermal) Spectro-polarimetry: 3D tomography Cosmology Cluster cosmology (with no physics biases/priors) Radio-galaxy cosmology“ Galaxy cosmology“ SZE Polarization Measuring CMB polarization The Cosmological Principle DM nature Cluster physics characterization Thermal, non-thermal pressure stratification Multiple components Relativistic plasma physics (thermal, non-thermal) Spectro-polarimetry: 3D tomography Cosmology Cluster cosmology (with no physics biases/priors) Radio-galaxy cosmology“ Galaxy cosmology“ SZE Polarization Measuring CMB polarization The Cosmological Principle DM nature Millimetron -range probes the electron plasma physics … and yields related cosmology Millimetron -range probes the electron plasma physics … and yields related cosmology

12 SZE: physics characterization MACS J07017.5+3745 A Triple-Merger Cluster ? [Mroczkowski et al. 2011] Bullet cluster A multi-plasma stratification ? Radio + X-rays Radio + Temperature Radio + Lensing

13 SZE: Bullet tomography Morphological SZE A2219 345 GHz Laboca600 GHz Herschel Shock hot Bullet cold [Prokhorov, S.C. et al. 2011] T standard deviation First measurement of the Temperature standard deviation in galaxy clusters using the SZE [Prokhorov & Colafrancesco 2012] ~ 13.9 keV  = 10.6 ± 3.8 keV Measure of the temperature stratification in clusters Measure of plasma in-homogeneity (th.+non-th.) along the line-of-sight Bullet Cluster

14 SZE: Bullet Astro Physics kT 1 = 13.9 keV  =3.5 10 -3 kT 2 = 25 keV,  =5.5 10 -3 Multi - Temperature Thermal + non-thermal kT = 13.9 keV  =1.1 10 -2 n e ~E -2.7, p 1 =1,  =2.4 10 -4 Evidence of non-gravitational activity in the cluster merging Shock acceleration or MHD acceleration Stochastic electron acceleration Continuous hadron acceleration Non-thermal Thermal T1 T2 [S.C. et al. 2011]  2 =1.27 d.o.f.=1 rms fom=1  2 =0.44 d.o.f.=2 rms fom=0.35

15 SZE: resolving cluster atmospheres 150 GHz 350 GHz 3 m. 12 m. X-ray Chandra MS0735 150 GHz 350 GHz R=100 Millimetron

16 MACS J07017.5+3745 B) kT = 12.8 kev (+2.1/-1.6) V = 3600 km/s (+3440/-2160) V = 3238 km/s (252/-242) C) kT = 34.0 kev (+11/-7.9) V = -3720 km/s (+2960/-2480) V = -733 k/s (+486/-478) D) kT ≈ 4 keV V = 831 km/s (843/-700) A) kT ≈ 2 keV V = 278 km/s (+295/-339) A Triple-Merger Cluster ?

17 MACS J07017.5+3745 B) kT = 12.8 kev (+2.1/-1.6) V = 3600 km/s (+3440/-2160) V = 3238 km/s (252/-242) C) kT = 34.0 kev (+11/-7.9) V = -3720 km/s (+2960/-2480) V = -733 k/s (+486/-478) D) kT ≈ 4 keV V = 831 km/s (843/-700) A) kT ≈ 2 keV V = 278 km/s (+295/-339) A Triple-Merger Cluster ? E) Non-thermal component s=3.5, p1=0.1  =5 10 -4 – 2 10 -2 E) Non-thermal component s=3.5, p1=0.1  =5 10 -4 – 2 10 -2

18 MACS J07017.5+3745 Comp. B Comp. C [S.C. & Marchegiani 2013] Cluster physics and Dynamics at high frequency > 350 GHz

19 SZE spectro-polarimetry Juttner Maxwell-Boltzmann Non-relativistic 1) Derive the velocity DF of electrons by using SZE observations at > 4 frequencies [Prokhorov, Colafrancesco, et al. 2011] 5 keV 8 keV 13 keV 20 keV BB spectrum 2) Polarization due to finite optical depth  allow to measure density and velocity distribution of the electrons

20 SZE cluster cosmology Perseus [Colafrancesco & Marchegiani 2010] SZEX-Ray SZE spectroscopy will allow to derive spatially resolved T-profiles for nearby clusters out to large radii: Separate thermal and non-thermal pressure components: T profile uniquely sampled in the outer parts of the cluster Inversion Technique SZE → T, , V p, T CMB SZE sensitivity (10-100 nK) will allow to reach the mass limit at which clusters and groups can be found Unbiased total mass reconstruction due to sensitivity to total pressure  I SZE and internal velocity fields  SZE

21 SZE: Cosmology with clusters Measure the CMB anisotropy at positions U 1 and U 2 by using galaxy cluster SZE Measure the CMB anisotropy at positions U 1 and U 2 by using galaxy cluster SZE S CMB Quadrupole Q 2 Cluster Polarized SZE reflects Q 2 [Colafrancesco, Tullio & Emritte 2013-14] Cosmological Principle

22 SZE: Cosmology with clusters Cluster Π−(th)RG Π−(non-th) Cluster Π−(th)RG Π−(non-th) S.C. et al. [2012-14] Measure the CMB multipoles at the position of clusters/RGs in the Universe 1  Jy/arcmin 2 0.042  Jy/arcmin 2 0.005  Jy/arcmin 2 0.05  Jy/arcmin 2 Quadrupole Octupole

23 SZE: SKA (10-30 GHz) Cluster cosmology: SZE and SZE-21cm CMB spectral modifications at early epochs: SZE- 21cm Dark Ages and EoR: SZE 21cm DM heating: SZE-21cm Primordial B-field Fundamental physics Photon mass and decay … SKA -range probes the background radiation fields … and yields related cosmology SKA -range probes the background radiation fields … and yields related cosmology

24 SZE cluster cosmology 3C292 3C294 Bullet cls VLA E-VLA MerKAT SKA-P1 SKA-P2 The SKA can measure SZE in various objects: -Clusters -Radiogalaxies -Galaxy halos/winds The SKA can measure SZE in various objects: -Clusters -Radiogalaxies -Galaxy halos/winds

25 SZE-21cm: DA and EoR CMB field modified SZE-21cm Collision/abs. z=200-30 Ly-  z=30-20 X-ray z=20-6 1+z=3 no DM extreme M min =10 -6 M o M min =10 -3 M o no DM (Colafrancesco & Marchegiani 2014) kT e =7 keV

26 SZE: the photon is not a theoretical requirement Classical electrodynamics: Maxwell equations are substituted by Proca (1936) equations for m  ≠ 0 Quantum theory: QED with Stuckelberg mechanism (1938) allows a non-zero photon mass without violation of Gauge invariance [Goldhaber & Nieto 2010] Photon can decay with lifetime    Good limits on m  : No tight limit on   : ExperimentResultReference Laboratory Williams, Faller & Hill (1971) Earth B-field Davis, Goldhaber & Nieto (1975) Solar wind Ryutov (2007)

27 SZE with  decay CMB spectrum modified by photon decay as function of [Colafrancesco & Marchegiani 2014]

28 Difference between the SZE without  decay and the SZE with  decay SKA (30 h) 260 h SZE with  decay: A2163 SKA can measure, or set the most stringent limits on, the  decay (Colafrancesco & Marchegiani 2014, A&A, 562, L2)

29 Conclusions Millimetron and SKA observations of the SZE have the potential of addressing several key questions for Cosmology and fundamental Astro-Physics Cosmological parameters and standard cosmological probes The Nature of Dark Matter (DM) The proof of the Cosmological Principle (CP) Origin of Cosmological magnetic field (B) The Dark Ages and EoR (DA - EoR) Fundamental properties of the Photon (  ) This is possible thanks to the un-precedent Wide-band spectro-polarimetry High sensitivity High spatial resolution Survey and pointed observation modes

30 THANKS for your attention


Download ppt "1 The SZE in the SKA & MILLIMETRON Era. The SZE: Physics high-energy photon Internal High-E electrons - thermal (supra-thermal) - relativistic ↑ Use CMB."

Similar presentations


Ads by Google