Download presentation
Presentation is loading. Please wait.
1
ETCCDI climate extremes indices
Jana Sillmann January, 23rd 2015
2
Expert Team on Climate Change Detection and Indices
Joint WMO CLIVAR/CCl/JCOMM/GEWEX Expert Team on Climate Change Detection and Indices Develop indices relevant to climate change monitoring and detection Create observational dataset(s) of indices with (ideally) global coverage ( Indices are: Statistically robust Easy to understand Globally valid Enable comparison of modeled data and observations
3
ETCCDI indices
4
ETCCDI percentile threshold indices
TN10p, TX10p Percentage of days when TN (orTX) < 10th percentile: Let TNij be the daily minimum temperature on day i in period j and let TNin10 be the calendar day 10th percentile centred on a 5-day window for the base period The percentage of time for the base period is determined where: TNij < TNin10 TN90p, TX90p Percentage of days when TN (or TX) > 90th percentile: Let TNij be the daily minimum temperature on day i in period j and let TNin90 be the calendar day 90th percentile centred on a 5-day window for the base period The percentage of time for the base period is determined where: TNij > TNin90 To avoid possible inhomogeneity across the in-base and out-base periods, the calculation for the base period ( ) requires the use of a bootstrap processure. Details are described in Zhang et al. (2005) .
5
ETCCDI Extremes Indices Calculation
Rclimdex used at regional workshops for station data Fclimdex adapted for climate model data/faster processing climdex.pcic.R open source R package for large datasets
6
ETCCDI Extremes Indices Archive (CMIP3/CMIP5)
7
ETCCDI Extremes Indices Calculation Preparation
Anne installed all necessary R packages on sverdrupt e.g., climdex.pcic_0.7-2.tar.gz, ncdf4_1.8.tar.gz, ncdf4.helpers_0.2-5.tar.gz, PCICt_0.5-4.tar.gz, udunits2_0.6.tar.gz, udunits tar.gz Have your data ready i.e., input and output directory
8
ETCCDI Extremes Indices Calculation Preparation
What you need to pay attention to: Format of Data Files needs to follow CMIP5 convention (name, attributes, etc.) variable_timeinterval_model_experiment_ensemblemember_startday_endday.nc Example: "pr_day_CESM1-CAM4_CO2BB1850_ens1_ nc” Base Period make sure it is within data range (standard base period for observation based indices )
9
compute_index_on_gcm_improved.r
ETCCDI Extremes Indices Calculation Preparation What you also need: The magic R script that does everything! compute_index_on_gcm_improved.r Or write your own code…
10
ETCCDI Extremes Indices Calculation Preparation
Read R package description: In R > getAnywhere(“climdex.cdd”)
11
ETCCDI Extremes Indices Calculation
###calculate indices library(climdex.pcic.ncdf) Loading required package: PCICt > input.files <- > c("pr_day_CESM1-CAM4_CO2BB1850_ens1_ nc", > "tasmin_day_CESM1-CAM4_CO2BB1850_ens1_ nc", > "tasmax_day_CESM1-CAM4_CO2BB1850_ens1_ nc") > author.data <- list(institution="Center for International Climate and > Environmental Research - Oslo, Norway", institution_id="CICERO") > create.indices.from.files(input.files, > "/div/enso/d12/janasi/CESM1-CAM4/indices/", input.files[1], > author.data, base.range=c(1850,1879), parallel=8, max.vals.millions=70 > ) Creating cluster of 8 nodes of type SOCK Finished computing indices ###calculate thresholds > library(climdex.pcic.ncdf) > c("pr_day_CanESM2_historical_r1i1p1_ nc", > "tasmax_day_CanESM2_historical_r1i1p1_ nc", > "tasmin_day_CanESM2_historical_r1i1p1_ nc") > "/div/ferrel/d2-3/cmip5/janasi/testground/indices/", input.files[1], > author.data, base.range=c(1961,1990), parallel=16, > max.vals.millions=70 ) Creating cluster of 16 nodes of type SOCK Finished computing indices > create.thresholds.from.file(input.files, "threshholds_CanESM2.nc", > author.data, base.range=c(1961,1990), parallel=FALSE, Finished computing thresholds > input.files <- c("pr_day_CanESM2_rcp85_r1i1p1_ nc", > "tasmax_day_CanESM2_rcp85_r1i1p1_ nc", > "tasmin_day_CanESM2_rcp85_r1i1p1_ nc") > author.data, base.range=c(1961, 1990), parallel=16, > max.vals.millions=70, thresholds.files="threshholds_CanESM2.nc") ETCCDI Extremes Indices Calculation ###calculate indices library(climdex.pcic.ncdf) Loading required package: PCICt > input.files <- > c("pr_day_CESM1-CAM4_CO2BB1850_ens1_ nc", > "tasmin_day_CESM1-CAM4_CO2BB1850_ens1_ nc", > "tasmax_day_CESM1-CAM4_CO2BB1850_ens1_ nc") > author.data <- list(institution="Center for International Climate and > Environmental Research - Oslo, Norway", institution_id="CICERO") > create.indices.from.files(input.files, > "/div/enso/d12/janasi/CESM1-CAM4/indices/", input.files[1], > author.data, base.range=c(1850,1879), parallel=8, max.vals.millions=70 > ) Creating cluster of 8 nodes of type SOCK Finished computing indices
12
ETCCDI Extremes Indices Calculation
###calculate thresholds > library(climdex.pcic.ncdf) Loading required package: PCICt > input.files <- > c("pr_day_CanESM2_historical_r1i1p1_ nc", > "tasmax_day_CanESM2_historical_r1i1p1_ nc", > "tasmin_day_CanESM2_historical_r1i1p1_ nc") > author.data <- list(institution="Center for International Climate and > Environmental Research - Oslo, Norway", institution_id="CICERO") > create.thresholds.from.file(input.files, "threshholds_CanESM2.nc", > author.data, base.range=c(1961,1990), parallel=FALSE, > max.vals.millions=70 ) Finished computing thresholds
13
ETCCDI Extremes Indices Calculation
###calculate indices with new thresholds > input.files <- c("pr_day_CanESM2_rcp85_r1i1p1_ nc", > "tasmax_day_CanESM2_rcp85_r1i1p1_ nc", > "tasmin_day_CanESM2_rcp85_r1i1p1_ nc") > create.indices.from.files(input.files, > "/div/ferrel/d2-3/cmip5/janasi/testground/indices/", input.files[1], > author.data, base.range=c(1961, 1990), parallel=16, > max.vals.millions=70, thresholds.files="threshholds_CanESM2.nc") Creating cluster of 16 nodes of type SOCK Finished computing indices
14
ETCCDI Extremes Indices Calculation Output
r1i1p1]$ ll total -rw-rw-r-- 1 janasi janasi Nov 3 09:01 altcddETCCDI_yr_NorESM1-M_historical_r1i1p1_ nc -rw-rw-r-- 1 janasi janasi Nov 3 09:01 altcsdiETCCDI_yr_NorESM1-M_historical_r1i1p1_ nc -rw-rw-r-- 1 janasi janasi Nov 3 09:01 altcwdETCCDI_yr_NorESM1-M_historical_r1i1p1_ nc -rw-rw-r-- 1 janasi janasi Nov 3 09:01 altwsdiETCCDI_yr_NorESM1-M_historical_r1i1p1_ nc -rw-rw-r-- 1 janasi janasi Nov 3 09:01 cddETCCDI_yr_NorESM1-M_historical_r1i1p1_ nc -rw-rw-r-- 1 janasi janasi Nov 3 09:01 csdiETCCDI_yr_NorESM1-M_historical_r1i1p1_ nc -rw-rw-r-- 1 janasi janasi Nov 3 09:02 cwdETCCDI_yr_NorESM1-M_historical_r1i1p1_ nc -rw-rw-r-- 1 janasi janasi Nov 3 09:02 dtrETCCDI_mon_NorESM1-M_historical_r1i1p1_ nc -rw-rw-r-- 1 janasi janasi Nov 3 09:02 dtrETCCDI_yr_NorESM1-M_historical_r1i1p1_ nc -rw-rw-r-- 1 janasi janasi Nov 3 09:02 fdETCCDI_yr_NorESM1-M_historical_r1i1p1_ nc -rw-rw-r-- 1 janasi janasi Nov 3 09:02 gslETCCDI_yr_NorESM1-M_historical_r1i1p1_ nc -rw-rw-r-- 1 janasi janasi Nov 3 09:02 idETCCDI_yr_NorESM1-M_historical_r1i1p1_ nc -rw-rw-r-- 1 janasi janasi Nov 3 09:02 prcptotETCCDI_yr_NorESM1-M_historical_r1i1p1_ nc -rw-rw-r-- 1 janasi janasi Nov 3 09:02 r10mmETCCDI_yr_NorESM1-M_historical_r1i1p1_ nc -rw-rw-r-- 1 janasi janasi Nov 3 09:02 r1mmETCCDI_yr_NorESM1-M_historical_r1i1p1_ nc -rw-rw-r-- 1 janasi janasi Nov 3 09:02 r20mmETCCDI_yr_NorESM1-M_historical_r1i1p1_ nc -rw-rw-r-- 1 janasi janasi Nov 3 09:02 r95pETCCDI_yr_NorESM1-M_historical_r1i1p1_ nc -rw-rw-r-- 1 janasi janasi Nov 3 09:02 r99pETCCDI_yr_NorESM1-M_historical_r1i1p1_ nc -rw-rw-r-- 1 janasi janasi Nov 3 09:03 rx1dayETCCDI_mon_NorESM1-M_historical_r1i1p1_ nc
15
ETCCDI Extremes Indices Calculation
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.