Download presentation
1
Professor Emeritus of Mathematics
Using MAPLE to Construct Repeating Patterns and Several Tessellations Inspired by M. C. Escher Elliot A. Tanis Professor Emeritus of Mathematics Hope College March 2, 2006
2
PARADE MAGAZINE, December 8, 2002
7
REFLECT ROTATE p BIKE BOX CHECKBOOK DECKED HEED HIDE
8
A Computer Algebra System (CAS) such as MAPLE can be used to construct tessellations.
The way in which tessellations are classified will be illustrated using examples from Chinese Lattice Designs, The Alhambra, Hungarian Needlework, and M. C. Escher's Tessellations. Some examples of the 17 plane symmetry groups will be shown.
9
A repeating pattern or a tessellation or a tiling of the plane is a covering of the plane by one or more figures with a repeating pattern of the figures that has no gaps and no overlapping of the figures. Examples: Equilateral triangles Squares Regular Hexagons Regular Polygons
10
Some examples of periodic or repeating patterns, sometimes called “wallpaper designs,” will be shown. There are 17 “plane symmetry groups” or types of patterns.
11
Examples of places where repeating patterns are found:
Wallpaper Designs Chinese Lattice Designs Hungarian Needlework Islamic Art The Alhambra M. C. Escher’s Tessellations
12
Wallpaper Designs
13
Chinese Lattice Designs
14
Chinese Lattice Design
15
Chinese Garden
16
p1 p211 p1m1 pg c1m1 p2mm p2gg p4gm p2mg p4m c2mm p4 p3 p3m1 p6 p31m p6mm
17
p1 p2 pm pg cm p2mm pmg pgg c2mm p4 p4mm p4gm p3 p3m1 p31m p6 p6mm
18
p2gg p2mm p2mg p4mm p4gm p6mm p1 p4 p3m1 cm p6 p31m p2 c2mm p3 pm pg
Journal of Chemical Education
19
Wall Panel, Iran, 13th/14th cent (p6mm)
20
Design at the Alhambra
21
Design at the Alhambra
22
Hall of Repose - The Alhambra
23
Hall of Repose - The Alhambra
24
Resting Hall - The Alhambra
25
Collage of Alhambra Tilings
26
M. C. Escher,
27
Keukenhof Gardens
28
Keukenhof Gardens
29
Escher’s Drawings of Alhambra Repeating Patterns
30
Escher Sketches of designs in the Alhambra and La Mezquita (Cordoba)
31
Mathematical Reference:
“The Plane Symmetry Groups: Their Recognition and Notation” by Doris Schattschneider, The Mathematical Monthly, June-July, 1978 Artistic Source: Maurits C. Escher ( ) was a master at constructing tessellations
32
Visions of Symmetry Doris Schattschneider W.H. Freeman 1990
33
1981, 1982, 1984, 1992
34
Rotations: plottools[rotate](M,Pi/2,[40,40])
A unit cell or “tile” is the smallest region in the plane having the property that the set of all of its images will fill the plane. These images may be obtained by: Translations: plottools[translate](tile,XD,YD) Rotations: plottools[rotate](M,Pi/2,[40,40]) Reflections:plottools[reflect](M,[[0,0],[40,40]]) Glide Reflections: translate & reflect
35
Unit Cell -- de Porcelain Fles
36
Translation
37
Translation
38
Translation
39
Translation
40
Pegasus - p1 105 D Baarn, 1959 System I
41
Pegasus - p1
45
p1 Birds Baarn 1959
48
p1 Birds Baarn 1967
53
2-Fold Rotation
54
2-Fold Rotation
57
p211
58
Doves, Ukkel, Winter p2
62
3-Fold Rotation
63
3-Fold Rotation
68
Reptiles, Ukkel, 1939
69
Escher’s Drawing – Unit Cell
p3
74
One Of Escher’s Sketches
75
Sketch for Reptiles
76
Reptiles, 1943 (Lithograph)
77
Metamorphose, PO, Window 5
78
Metamorphose, Windows 6-9
79
Metamorphose, Windows 11-14
80
Air Mail Letters Baarn 1956
81
Air Mail Letters in PO
82
Post Office in The Hague Metamorphosis is 50 Meters Long
83
4-Fold Rotation
84
4-Fold Rotation
88
Reptiles, Baarn, 1959 p4
91
Reptiles, Baarn, 1959
92
6-Fold Rotation
93
6-Fold Rotation
97
P6 Birds Baarn, August, 1954
100
P6 Birds, Baarn, August, 1954
101
Rotations
102
Reflection
113
Design from Ancient Egypt
Handbook of Regular Patterns by Peter S. Stevens
114
Glide Reflection
115
Glide Reflection
119
p1g1 Toads
124
p1g1 Toads, Baarn, January, 1961
125
Unicorns Baarn, November, 1950
128
Swans Baarn, December, 1955
131
Swans Baarn, December, 1955
135
p2mm Baarn 1950
140
p2mg
141
p2mg
142
p2mg
145
p2mg
146
p2mg
147
p2mg
150
p2gg Baarn 1963
152
p2gg
157
p4mm
158
p4mm
159
p4mm
160
p4mm
162
p4gm
163
p4gm
164
p4gm
165
p4gm
167
p4gm
169
p3m1
170
p3m1
171
P3m1
172
p3m1
173
p3m1
175
p31m
176
Flukes Baarn 1959
177
p31m
178
p31m
179
p31m
180
P31m, Baarn, 1959
181
p31m
182
p31m
184
p6mm
185
p6mm
186
p6mm
187
p6mm
188
p6mm
190
c1m1
191
c1m1
192
c1m1
194
c1m1
195
c1m1
196
c1m1
202
Keukenhof Garden
203
Seville
204
Seville
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.