Download presentation
Presentation is loading. Please wait.
Published byEarl Harrow Modified over 9 years ago
1
Model-based Image Interpretation with Application to Facial Expression Recognition Matthias Wimmer matthias.wimmer@cs.tum.edu
2
2007, December 11 th 2/25 Technische Universität München Matthias Wimmer Communication Schemes Natural human-computer interaction
3
2007, December 11 th 3/25 Technische Universität München Matthias Wimmer Example 1: Nissan Pivo 2
4
2007, December 11 th 4/25 Technische Universität München Matthias Wimmer Example 2: Sony’s Smile Shutter
5
2007, December 11 th 5/25 Technische Universität München Matthias Wimmer Outline of this Presentation Facial Expression Recognition Model-based image interpretation Adaptive skin color extraction image facial expression
6
2007, December 11 th 6/25 Technische Universität München Matthias Wimmer Facial Expression Recognition
7
2007, December 11 th 7/25 Technische Universität München Matthias Wimmer What are Facial Expressions? Six universal facial expressions (Ekman et al.) Laughing, surprised, afraid, disgusted, sad, angry Cohn-Kanade-Facial-Expression database Performed Exaggerated Determined by Shape Muscle motion
8
2007, December 11 th 8/25 Technische Universität München Matthias Wimmer Why are they difficult to estimate? Faces look differently Hair, beard, skin-color, … Different facial poses Only slight muscle activity
9
2007, December 11 th 9/25 Technische Universität München Matthias Wimmer Our Approach motion features and structural features
10
2007, December 11 th 10/25 Technische Universität München Matthias Wimmer Model Fitting with Learned Objective Functions
11
2007, December 11 th 11/25 Technische Universität München Matthias Wimmer Model-based image interpretation The model The model contains a parameter vector that represents the model’s configuration. The objective function Calculates a value that indicates how accurately a parameterized model matches an image. The fitting algorithm Searches for the model parameters that describe the image best, i.e. it minimizes the objective function.
12
2007, December 11 th 12/25 Technische Universität München Matthias Wimmer Local Objective Functions
13
2007, December 11 th 13/25 Technische Universität München Matthias Wimmer Ideal Objective Functions P1:Correctness property: Global minimum corresponds to the best fit. P2:Uni-modality property: The objective function has no local extrema. ¬ P1 P1 ¬P2 P2 Don’t exist for real-world images Only for annotated images: f n ( I, x ) = | c n – x |
14
2007, December 11 th 14/25 Technische Universität München Matthias Wimmer Learning the Objective Function x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x Ideal objective function generates training data Machine Learning technique generates calculation rules
15
2007, December 11 th 15/25 Technische Universität München Matthias Wimmer Benefits of the Machine Learning Approach Accurate and robust calculation rules Locally customized calculation rules Generalization from many images Simple job for the designer Critical decisions are automated No domain-dependent knowledge required No loops
16
2007, December 11 th 16/25 Technische Universität München Matthias Wimmer Evaluation: Fitting Accuracy
17
2007, December 11 th 17/25 Technische Universität München Matthias Wimmer Adaptive Skin Color Classification
18
2007, December 11 th 18/25 Technische Universität München Matthias Wimmer Basics about Skin Color Classification green image 1 image 2 Skin color depends on several image conditions Skin color occupies a large cluster Skin color varies greatly within a set of images. Skin color varies slightly within one image. image 2 green red
19
2007, December 11 th 19/25 Technische Universität München Matthias Wimmer Our Approach Learn image-specific skin color characteristics Parameterize a skin color classifier accordingly Offline: Learn the skin color mask Specific for the face detector Online: Detect the image specific skin color model Using the face detector Using the skin color mask Adapt skin color classifier
20
2007, December 11 th 20/25 Technische Universität München Matthias Wimmer Results Robustness: Detection of facial parts: eyes, lips, brows,… Exact shape outline Ethnic groups Correctly detected pixels: fixed classifier:90.4%74.8%40.2% adapted classifier:97.5%87.5%97.0% improvement: 1.08 1.17 2.41 adapted classifier fixed classifier original image
21
2007, December 11 th 21/25 Technische Universität München Matthias Wimmer Additional Work lip classifier eye brow classifier iris classifier tooth classifier
22
2007, December 11 th 22/25 Technische Universität München Matthias Wimmer Conclusion and Outlook
23
2007, December 11 th 23/25 Technische Universität München Matthias Wimmer Conclusion Possible to derive information from face images Model-based image interpretation is beneficial Learn crucial decisions within algorithms Don’t specify parameters by trial and error Adaptive skin color classifier Learned objective functions Not yet reached goal for natural HCI Progress is clearly visible. → Goal is achievable!
24
2007, December 11 th 24/25 Technische Universität München Matthias Wimmer Outlook Learn global objective function Learn discriminative function (direct parameter update) Rendered AAM provides training images Many images Exact ground truth (no manual work required) Learn with further features Higher number of features SIFT, LBP, … Learn with better classifiers Relevance Vector Machines Boosted regressors
25
2007, December 11 th 25/25 Technische Universität München Matthias Wimmer Thank you! Online-Demonstration: http://www9.cs.tum.edu/people/wimmerm
26
2007, December 11 th 26/25 Technische Universität München Matthias Wimmer Publications 2008 Tailoring Model-based Techniques for Facial Expression Interpretation. ACHI08 Face Model Fitting with Generic, Group-specific, and Person-specific Objective Functions. VISAPP Low-level Fusion of Audio and Video Feature for Multi-modal Emotion Recognition. VISAPP Facial Expression Recognition for Human-robot Interaction - A Prototype. Robot Vision 2007 Audiovisual Behavior Modeling by Combined Feature Spaces. ICASSP Emotionale Aspekte in Produktevaluationen. Multimediatechnik Application of emotion recognition methods in automotive research. Emotion and Computing Human Capabilities on Video-based Facial Expression Recognition. Emotion and Computing SIPBILD - Mimik- und Gestikerkennung in der Mensch-Maschine-Schnittstelle. INFORMATIK Learning Robust Objective Functions with Application to Face Model Fitting. DAGM Automatically Learning the Objective Function for Model Fitting. MIRU Initial Pose Estimation for 3D Models Using Learned Objective Functions. ACCV Estimating Natural Activity by Fitting 3D Models via Learned Objective Functions. VMV Learning Local Objective Functions for Robust Face Model Fitting. PAMI (journal paper) Enabling Users to Guide the Design of Robust Model Fitting Algorithms. ICV 2006 Learning Robust Objective Functions for Model Fitting in Image Understanding Applications. BMVC A Person and Context Specific Approach for Skin Color Classification. ICPR Adaptive Skin Color Classificator. Journal on Graphics, Vision and Image Processing (journal paper) Bitte recht freundlich. Zukunft im Brennpunkt (journal paper) 2005 Sensor-based Situated, Individualized, and Personalized Interaction in Smart Environments. INFORMATIK Adaptive Skin Color Classificator. GVIP 2004 Experiences with an Emotional Sales Agent. Affective Dialogue Systems
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.