Download presentation
1
(Université de Toulon et du Var)
Stratified turbulent flows in Ocean and Atmosphere : Processes, observations and CFD Laboratoire de Sondages Electromagnétiques de l’Environnement Terrestre (Université de Toulon et du Var) Philippe Fraunié Sabeur BERRABAA Jose Manuel Redondo et al
2
Observations
3
Basic processes
4
Kelvin-Helmholtz instability : Richter (1969)
KH instability Kelvin-Helmholtz instability : Richter (1969)
5
Holmboe instability Ri > ¼ Su > 2 Sb
Possibility of Holmboe instability
6
Holmboe instability
7
Richardson number
8
Global Richardson number
9
Turbulence scales
10
Measurements in Atmosphere
Profiles of temperature mesured by baloons : weakly and srongly stratified layers (Dalaudier et al., 1994)
11
Measurements in Oceans
Temperature profiles in Malta sea : Contribution of K.-H. instabilities to mixed layers (Woods, 1969) Korotayev et Panteleyev (1977), Indian and Pacific oceans, Alford et Pinkel (2000) California
12
Measurements in Ocean Temperature profiles in Japan sea : Contribution of internal waves to mixed layers (Navrotsky, 1999)
13
Laboratory Experiments : the layering effect
Generation of turbulence (grids) in a stratified flow at rest Interaction between turbulence and stratification
14
Computational Fluid Dynamics
Focused on Kelvin-Helmholtz instability (Palmer et al., 1996) Only few numerical experiments concerning internal waves (Koudella et Staquet, 1996 ; Bouruet-Aubertot et al., 2001)
15
Navier-Stokes solver Based on JETLES DNS Code (Versico, Orlandi) adapted to stratified flows : cartésian coodinates sreamwise non périodic bc (Ox) transport equations for salinity and temperature) LES Smagorinsky subgrid model
16
LES equations Continuity equation : Momentum equations :
17
Transport of scalar fields
Temperature and Salinity : State Equation :
18
LES numerical code Continuity equation : Momentum equations :
19
Turbulence closure Smagorinsky model :
20
Discretization Time marching : three steps Runge-Kutta scheme, third order accurate Spacial discretization : second order centered finite differences
21
Algorithm
22
Computational domain Taille du domaine:
2 < Lx < 4 m ; Ly = 0.1 m ; 0.1 < Lz < 0.2 m Taille de la barre : Maillage : dx = 3.9 mm ; dy = 3.1 mm ; dz = 1 mm
23
Boundary conditions En surface et au fond : A la frontière droite :
A la frontière gauche : si avec
24
Homogeneous flow : Von Karman streets
Champs d’iso-vitesses horizontales, d’iso-vitesses verticales et d’iso-vorticités d’axe (Oy)
25
3D structures low Reynlods number
Surfaces d’iso-vorticité : - en rouge et bleu, les surfaces - en vert et noir, les surfaces
26
3D structures larger Reynolds number
Surfaces d’iso-vorticité : - en rouge et bleu, les surfaces - en vert et noir, les surfaces
27
2D du computational domain
28
Turbulence collapse (1)
Champs d’iso-vorticité d’axe (Oy)
29
Turbulence collapse (2)
Transformée de Fourier de l’évolution temporelle des composantes de vitesse dans le sillage proche : - Diminution du nombre de Strouhal avec l’augmentation de la stratification
30
Turbulence collapse (3) : physical process
Temporal evolution of the near wake width for Richardson numbers less than 1/4 : the wake grows following a t1/3 law as for homogeneous flow coolapse occurs when the wake width is maximum the wake widh decreases up to an constant value
31
Physical collapse (4) L’épaisseur du sillage proche atteint une valeur
ooo Ri0 = 0.03 ; ooo Ri0 = 0.039 D ’après Lin et al. (1992) L’épaisseur du sillage proche atteint une valeur maximale pour NBVt 2 Ri0 < 1/9
32
Physical collapse (5) NBVt (maximum wake width) depends on Ri0 (Xu et al., 1995) : Ri0 < 1/9 : NBVt varies in the range 1/9 < Ri0 < 1/4 : NBVt varies between 3 and 5 Ri0 > 1/4 : the wake width is constant
33
Physical collapse (6) : La taille de la zone perturbée dans le cas
n’évolue pas contrairement au cas
34
Gravity internal wave : weak initial stratification (1)
Iso-density fields for différent Richardson numbers : Ondulation occurs at the starting point
35
Gravity internal wave : weak initial stratification (2)
Profiles of local Richardson number : Waves occur for Ri > 1 : stratification dominates turbulence
36
Gravity internal wave : strong initial stratification (1)
37
Gravity internal wave : strong initial stratification (2)
Iso-density and d’iso-vorticity - transverse axis (Oy) ondulatory motion imposed by internal waves Remember Lee waves (Atkinson) :
38
Mixing Processes in the near wake : weak initial stratification (1)
Iso-vorticity - transverse axis (Oy) in the near wake Shear instability overturning
39
Mixing Processes in the near wake : weak initial stratification (2)
Overturning : time evolution of two density surfaces Roll up
40
Mixing Processes in the near wake : weak initial stratification (3)
Local convective instability Unstable situation Overturning
41
Mixing Processes in the near wake : strong initial stratification (1)
Time evolution of two density surfaces Breaking internal waves
42
Mixing Processes in the far wake : weak initial stratification
Sillage lointain Iso-density field in the far wake Mushroom type structures collapse due to stratification
43
Mixing Processes in the far wake : strong initial stratification (1)
Sillage lointain Iso-density field in the far wake Mixed fluid inside the elliptic zones
44
Mixing Processes in the far wake : strong initial stratification (2)
Iso-density fields at different times interaction betyween shifted internal waves : Breaking
45
Layering effect : computational domain
Succession de passages d’une ou de plusieurs barres
46
« sheets & layers » Density profiles for weak and strong initial stratification Layering effect weakly depends on initial stratification
47
Strongly stratified layers
?
48
Stratified layers of another type
Unstable stratification Convergence of density isolines
49
Successive wakes Density profiles and gradients after each cylinder tow Sratification increases after each towing
50
Successive wakes Time evolution of the density gradient
The maximum value increases Damped oscillations
51
Infinitesimal perturbation (1)
Champ de densité après trois passages de la perturbation
52
Successive infinitesimal perturbation (2)
Density profiles and gradients after 4 tows Growth of the perturbation after each towing
53
Time evolution of the density and velocity gradients
Oscillation is damped The stratification is evolving following three steps The layering increase is due to the initial state before new perturbation
54
Vertical cylinder: computational domain
55
Laboratory experiments
Density profile Towed vertical cylinder
56
Vertical cylinder zig-zag instability Layering effect
57
Conclusion Caractéristics of stratified flows : Mixing processes :
turbulence collapse internal waves occuring Mixing processes : overturning collapse breaking internal waves Layering effect : sheets & layers reorganizing layers
58
Perspectives CFD improvements : subgrid models (Babiano et al)
boundary conditions (open problem) long time computation : statistics and budgets subgrid models (Babiano et al)
59
Energy spectrum
60
Velocity components and gradients
61
Processus de mélange dans le sillage proche : zones mélangées
Evolution temporelle d’un profil vertical de densité dans les cas de faible et de forte stratification
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.