Download presentation
Presentation is loading. Please wait.
Published byAnabel Blong Modified over 9 years ago
1
Introduction to DNA Lecture notes edited by John Reif from PPT lectures by: Image from http://zen-haven.dkhttp://zen-haven.dk Natalia Tretyakova, College of Pharmacy, U. of Minnesota Richard Lavery, Institut de Biologie Physico-Chimique, Paris
2
DNA Double helix Stores genetic code as a linear sequence of bases ≈ 20 Å in diameter Human genome ≈ 3.3 x 10 9 bp ≈ 25,000 genes Richard Lavery Institut de Biologie Physico-Chimique, Paris
3
DNA Size Scale
4
Biological length scale Chemical bond1 Å(10 -10 m) Amino acid10 Å(10 -9 m) Globular protein100 Å(10 -8 m) Virus1000 Å(10 -7 m) Cell nucleus1 m(10 -6 m) Bacterial cell5 m(10 -5 m) Chromosome DNA10 cm(10 -1 m) Richard Lavery Institut de Biologie Physico-Chimique, Paris
5
DNA BASES
6
Nucleoside Nucleotide OH ribose H deoxyribose Richard Lavery Institut de Biologie Physico-Chimique, Paris The Building Blocks of DNA
7
Nucleotides are linked by phosphodiester bonds Strand has a direction (5' 3') DNA is negatively charged on phosphate backbone. Richard Lavery Institut de Biologie Physico-Chimique, Paris
8
Base families Purine (Pur / R)Pyrimidine (Pyr / Y) C2 N1 C5 C6 N7 C4 C8 N9 N3 N1 C4 N3 C2 C5 C6 Richard Lavery Institut de Biologie Physico-Chimique, Paris
9
DNA and RNA nucleobases (DNA only) (RNA only) Natalia Tretyakova College of Pharmacy, U. of Minnesota
10
Purine Bases The 9 atoms that make up the fused rings (5 carbon, 4 nitrogen) are numbered 1-9. All ring atoms lie in the same plane. Richard B. Hallick Introductory Course in Biology or Biochemistry
11
Purine Nucleotides Natalia Tretyakova College of Pharmacy, U. of Minnesota
12
Pyrimidine Bases All pyrimidine ring atoms lie in the same plane. Richard B. Hallick Introductory Course in Biology or Biochemistry
13
Pyrimidine Nucleotides Natalia Tretyakova College of Pharmacy, U. of Minnesota
14
nucleobase(Deoxy) nucleoside 5’-mononucleotide Adenine (A) Guanine (G) Thymine (T) Cytosine (C) Uracil (U) 2’-Deoxyadenosine (dA) 2’- Deoxyguanosine (dG) 2’- Deoxythymidine (dT) 2’- Deoxycytidine (dC) Uridine (U) Deoxyadenosine 5’-monophosphate (5’-dAMP) Deoxyguanosine 5’-monophosphate (5’-dGMP) Deoxythymidine 5’-monophosphate (5’-dTMP) Deoxycytidine 5’-monophosphate (5’-dCMP) Uridine 5’-monophosphate (5’-UMP) Nomenclature of nucleobases, nucleosides, and mononucleotides Natalia Tretyakova College of Pharmacy, U. of Minnesota
15
Structural differences between DNA and RNA DNA RNA Natalia Tretyakova College of Pharmacy, U. of Minnesota
16
Deoxyribose Sugar The hydroxyl groups on the 5'- and 3'- carbons link to the phosphate groups to form the DNA backbone. Richard B. Hallick Introductory Course in Biology or Biochemistry
17
Richard B. Hallick Introductory Course in Biology or Biochemistry Nucleosides A nucleotide is a nucleoside with one or more phosphate groups covalently attached to the 3'- and/or 5'-hydroxyl group(s).
18
Preferred conformations of nucleobases and sugars in DNA and RNA 7.0 A 5.9 A Sugar puckers: Natalia Tretyakova College of Pharmacy, U. of Minnesota
19
Nucleosides Must Be Converted to 5’-Triphosphates to be Part of DNA and RNA Natalia Tretyakova College of Pharmacy, U. of Minnesota
20
DNA BASE PAIRING
21
Watson-Crick base pairs Thymine -AdenineCytosine -Guanine Richard Lavery Institut de Biologie Physico-Chimique, Paris
22
Richard B. Hallick Introductory Course in Biology or Biochemistry A-T and G-C Base Pairing
23
Hydrogen bond donors and acceptors on each edge of a base pair Natalia Tretyakova College of Pharmacy, U. of Minnesota
24
Richard Lavery Institut de Biologie Physico-Chimique, Paris Purine always binds with a Pyrimidine
25
Base pair dimensions Richard Lavery Institut de Biologie Physico-Chimique, Paris
26
DNA/RNA chemical structure DNA : A,T,G,C + deoxyribose RNA : A,U,G,C + ribose Richard Lavery Institut de Biologie Physico-Chimique, Paris
27
DNA BACKBONE STRUCTURE
28
Richard B. Hallick Introductory Course in Biology or Biochemistry Backbone structure: Alternating backbone of deoxyribose and phosphodiester groups Chain has a direction (known as polarity), 5'- to 3'- from top to bottom Oxygens (red atoms) of phosphates are polar and negatively charged Bases extend away from chain, and stack atop each other Bases are hydrophobic Helix Axis View:
29
OnScreen DNA Model app
30
B-DNA STRUCTURE
31
Video of DNA Helix Structure: http://www.youtube.com/watch?v=ZGHkHMoyC5I Contains material from: Alberts, Bray, Hopkin, Johnson, Lewis, Raff, Roberts, Walter, Essential Cell Biology, Second Edition, Garland Science Publishing, 2004
32
CGCGTTGACAACTGCAGAATC Richard Lavery Institut de Biologie Physico-Chimique, Paris B-DNA Structure
33
Richard B. Hallick Introductory Course in Biology or Biochemistry Features of the B-DNA Double Helix Two DNA strands form a helical spiral, winding around a helix axis in a right-handed spiral The two polynucleotide chains run in opposite directions The sugar-phosphate backbones of the two DNA strands wind around the helix axis like the railing of a sprial staircase The bases of the individual nucleotides are on the inside of the helix, stacked on top of each other like the steps of a spiral staircase.
34
B-DNA (axial view) Richard Lavery Institut de Biologie Physico-Chimique, Paris
35
B-DNA (lateral view) R.H. helix Richard Lavery Institut de Biologie Physico-Chimique, Paris
36
Base stacking: an axial view of B-DNA Natalia Tretyakova College of Pharmacy, U. of Minnesota
37
PI Bonds – (Mechanism of PI Base Stacking)
38
Forces stabilizing DNA double helix 1.Hydrogen bonding (2-3 kcal/mol per base pair) 2.Stacking (hydrophobic) interactions (4-15 kcal/mol per base pair) 3.Electrostatic forces. Natalia Tretyakova College of Pharmacy, U. of Minnesota Comparison to other bonds 1.Covalent Bond Energies: 1.C-C 85 kcal/mol 2.C-O 87 kcal/mol
39
right handed helix planes of bases are nearly perpendicular to the helix axis. Sugars are in the 2’ endo conformation. Bases are the anti conformation. Bases have a helical twist of 34.6º (10.4 bases per helix turn) Helical pitch = 34 A B-DNA 3.4 A rise between base pairs Wide and deep Narrow and deep 7.0 A helical axis passes through base pairs 23.7 A Natalia Tretyakova College of Pharmacy, U. of Minnesota
40
DNA can deviate from the ideal Watson-Crick structure Helical twist ranges from 28 to 42° Propeller twisting 10 to 20° Base pair roll Natalia Tretyakova College of Pharmacy, U. of Minnesota
41
DNA grooves MINOR MAJOR Richard Lavery Institut de Biologie Physico-Chimique, Paris
42
Major groove and Minor groove of DNA NH N N O 2 N N N H 2 N O C-1’ HN N O O N N N N NH 2 C-1’ To deoxyribose-C1’C1’ -To deoxyribose Hypothetical situation: the two grooves would have similar size if dR residues were attached at 180° to each other Natalia Tretyakova College of Pharmacy, U. of Minnesota
43
Major and minor groove of the double helix Wide and deep Narrow and deep NH N N O 2 N N N H 2 N O C-1’ HN N O O N N N N NH 2 C-1’ Natalia Tretyakova College of Pharmacy, U. of Minnesota
44
B-type duplex is not possible for RNA steric “clash” Natalia Tretyakova College of Pharmacy, U. of Minnesota
45
A-DNA STRUCTURE
46
A and B DNA allomorphs B A Hydration Antiparallel strands 5’5’ 5’5’ 3’3’ 3’3’ Richard Lavery Institut de Biologie Physico-Chimique, Paris De-hydration
47
A-DNA (longitudinal view) Richard Lavery Institut de Biologie Physico-Chimique, Paris
48
A-DNA (lateral view) R.H. helix Richard Lavery Institut de Biologie Physico-Chimique, Paris
49
A-form helix: dehydrated DNA; RNA-DNA hybrids Top View Right handed helix planes of bases are tilted 20 ° relative the helix axis. 2.3 A rise between base pairs Sugars are in the 3’ endo conformation. Bases are the anti conformation. 11 bases per helix turn Helical pitch = 25.3 A 25.5 A Natalia Tretyakova College of Pharmacy, U. of Minnesota
50
The sugar puckering in A-DNA is 3’-endo 7.0 A 5.9 A Natalia Tretyakova College of Pharmacy, U. of Minnesota
51
A-DNA has a shallow minor groove and a deep major groove B-DNA Helix axis A-DNA Natalia Tretyakova College of Pharmacy, U. of Minnesota
52
Z-DNA STRUCTURE
53
Z-DNA (longitudinal view) Richard Lavery Institut de Biologie Physico-Chimique, Paris
54
Z-DNA (lateral view) L.H. helix Richard Lavery Institut de Biologie Physico-Chimique, Paris
55
Base pairs are rotated in Z-DNA Richard Lavery Institut de Biologie Physico-Chimique, Paris
56
Z-form double helix: polynucleotides of alternating purines and pyrimidines (GCGCGCGC) at high salt Left handed helix Backbone zig-zags because sugar puckers alternate between 2’ endo pyrimidines and 3’ endo (purines) Bases alternate between anti (pyrimidines) and syn conformation (purines). 12 bases per helix turn Helical pitch = 45.6 A planes of the bases are tilted 9° relative the helix axis. Flat major groove Narrow and deep minor groove 18.4 A 3.8 A rise between base pairs Natalia Tretyakova College of Pharmacy, U. of Minnesota
57
Sugar and base conformations in Z-DNA alternate : 5’-GCGCGCGCGCGCG 3’-CGCGCGCGCGCGC C: sugar is 2’-endo, base is anti G: sugar is 3’-endo, base is syn Natalia Tretyakova College of Pharmacy, U. of Minnesota
58
Comparing A, B and Z-DNA
59
Natalia Tretyakova College of Pharmacy, U. of Minnesota
60
Biological relevance of the minor types of DNA secondary structure Although the majority of chromosomal DNA is in B-form, some regions assume A- or Z-like structure Runs of multiple Gs are A-like The upstream sequences of some genes contain 5-methylcytosine = Z-like duplex RNA-DNA hybrids and ds RNA have an A-type structure Structural variations play a role in DNA-protein interactions Natalia Tretyakova College of Pharmacy, U. of Minnesota
62
Backbone Dihedrals
63
Backbone dihedrals - I 0 Richard Lavery Institut de Biologie Physico-Chimique, Paris
64
+60° +10° Dihedral angle definition StaggeredEclipsed Richard Lavery Institut de Biologie Physico-Chimique, Paris
65
Favoured conformations gauche + trans gauche - Richard Lavery Institut de Biologie Physico-Chimique, Paris
66
Backbone dihedrals - II :O3’ – P – O5’ – C5’g - :P – O5’ – C5’ – C4’t :O5’ – C5’ – C4’ – C3’g + :C5’ – C4’ – C3’ – O3’g + :C4’ – C3’ – O3’ – Pt :C3’ – O3’ – P – O5’g - (Y) : O4’ – C1’ – N1 – C2g - (R) : O4’ – C1’ – N9 – C4 Richard Lavery Institut de Biologie Physico-Chimique, Paris
67
syn-anti glycosidic conformations Richard Lavery Institut de Biologie Physico-Chimique, Paris
68
Sugar ring puckering C5’ ENDO EXO Base Richard Lavery Institut de Biologie Physico-Chimique, Paris
69
Sugar pucker described as pseudorotation North : C3’-endo East : O4’-endo South : C3’-endo "2 B or not 2 B...." W. Shakespeare 1601
70
Pseudorotation Equations Altona et al. J. Am. Chem. Soc. 94, 1972, 8205 0 2 1 3 4 Base tan P = ( 4 - 1 ) - ( 3 - 0 ) 2 2 (Sin 36° + Sin72°) Amp = 2 / Cos P
71
Preferred sugar puckers Richard Lavery Institut de Biologie Physico-Chimique, Paris
72
Sugar pucker and P-P distance Richard Lavery Institut de Biologie Physico-Chimique, Paris
73
UNUSUAL DNA STRUCTURES
74
Alternative base pairs Watson-Crick Reversed Watson-Crick HoogsteenReversed Hoogsteen Richard Lavery Institut de Biologie Physico-Chimique, Paris
75
Watson-Crick + Hoogsteen = Base triplet - note C(N3) protonation Richard Lavery Institut de Biologie Physico-Chimique, Paris
76
Triple helix DNA Richard Lavery Institut de Biologie Physico-Chimique, Paris
77
Guanine Hoogsteen pairing Base tetraplex Richard Lavery Institut de Biologie Physico-Chimique, Paris
78
Robert E Johnson et. al University of Texas Medical Branch Watson Crick vs Hoogsteen Hydrogen Bonding. (inset, G-C bonding also shown)
79
Quadruplex DNA Richard Lavery Institut de Biologie Physico-Chimique, Paris
80
Inverted repeat can lead to loop formation Richard Lavery Institut de Biologie Physico-Chimique, Paris
81
DNA cruciform Holliday junction Richard Lavery Institut de Biologie Physico-Chimique, Paris
82
PNA versus DNA Richard Lavery Institut de Biologie Physico-Chimique, Paris
83
Peptide Nucleic acid(PNA) Achiral, peptide-like backbone Backbone is uncharged High thermal stability High-specificity hybridization with DNA Resistant to enzymatic degradation Can displace DNA strand of duplex Pyrimidine PNA strands can form 2:1 triplexes with ssDNA Biotechnological applications Richard Lavery Institut de Biologie Physico-Chimique, Paris
84
Parallel-stranded DNA Richard Lavery Institut de Biologie Physico-Chimique, Paris
85
I-DNA: intercalated parallel-stranded duplexes Richard Lavery Institut de Biologie Physico-Chimique, Paris
86
and nucleotide anomers Richard Lavery Institut de Biologie Physico-Chimique, Paris
87
H OH is not the only change in passing from DNA to RNA.... Richard Lavery Institut de Biologie Physico-Chimique, Paris
88
Biophysical properties of DNA
89
Facile denaturation (melting) and re-association of the duplex are important for DNA’s biological functions. In the laboratory, melting can be induced by heating. Hybridization techniques are based on the affinity of complementary DNA strands for each other. Duplex stability is affected by DNA length, % GC base pairs, ionic strength, the presence of organic solvents, pH Negative charge – can be separated by gel electrophoresis T° Single strands duplex Natalia Tretyakova College of Pharmacy, U. of Minnesota
90
Separation of DNA fragments by PAGE DNA strands are negatively charged. Migrate towards the (+) electrode (anode) Migration time ~ ln ( number of base pairs)
91
Books on DNA Principles of Nucleic Acid Structure, W. Saenger, 1984 Springer-Verlag Nucleic Acid Structure, Ed. S. Neidle, 1999 Oxford University Press DNA Structure and Function, R.R. Sinden, 1994 Academic Press Biochemistry, D. Voet and J.G. Voet, 1998 DeBoeck The Eighth Day of Creation, H.F. Judson, 1996 Cold Spring Harbour Press Richard Lavery Institut de Biologie Physico-Chimique, Paris
92
HISTORY of DNA
93
History of DNA 1865Gregor Mendel publishes his work on plant breeding with the notion of "genes" carrying transmissible characteristics 1869"Nuclein" is isolated by Johann Friedrich Miescher à Tübingen in the laboratory of Hoppe-Seyler 1892Meischer writes to his uncle "large biological molecules composed of small repeated chemical pieces could express a rich language in the same way as the letters of our alphabet" 1920Recognition of the chemical difference between DNA and RNA Phoebus Levene proposes the "tetranucleotide hypothesis" 1938William Astbury obtains the first diffraction patters of DNA fibres Richard Lavery Institut de Biologie Physico-Chimique, Paris
94
History of DNA 1944Oswald Avery (Rockefeller Institute) proves that DNA carries the genetic message by transforming bacteria Richard Lavery Institut de Biologie Physico-Chimique, Paris
95
History of DNA 1950Erwin Chargaff discovers A/G = T/C Richard Lavery Institut de Biologie Physico-Chimique, Paris
96
History of DNA 1953Watson and Crick propose the double helix as the structure of DNA based on the work of Erwin Chargaff, Jerry Donohue, Rosy Franklin and John Kendrew Richard Lavery Institut de Biologie Physico-Chimique, Paris
97
Maurice Wilkins – Kings College, London Richard Lavery Institut de Biologie Physico-Chimique, Paris
98
Watson-Crick model of DNA was based on X-ray diffraction picture of DNA fibres (Rosalind Franklin and Maurice Wilkins) Rosalind Franklin Natalia Tretyakova College of Pharmacy, U. of Minnesota
99
Rosalind Franklin (in Paris) Richard Lavery Institut de Biologie Physico-Chimique, Paris
100
X-ray fibre diffraction pattern of B-DNA Richard Lavery Institut de Biologie Physico-Chimique, Paris
101
Linus Pauling’s DNA Richard Lavery Institut de Biologie Physico-Chimique, Paris
102
DNA secondary structure – double helix James Watson and Francis Crick, 1953- proposed a model for DNA structure DNA is the molecule of heredity (O.Avery, 1944) X-ray diffraction (R.Franklin and M. Wilkins) E. Chargaff (1940s) G = C and A = T in DNA Francis CrickJim Watson Natalia Tretyakova College of Pharmacy, U. of Minnesota
103
Watson and Crick Richard Lavery Institut de Biologie Physico-Chimique, Paris
104
It has not escaped our notice … It has not escaped our notice that the specific pairing we have postulated suggests a possible copying mechanism for the genetic material. Richard Lavery Institut de Biologie Physico-Chimique, Paris
105
Double helix ? Richard Lavery Institut de Biologie Physico-Chimique, Paris
106
transcription translation DNA replication (deoxyribonucleic acids) (ribonucleic acids) Natalia Tretyakova College of Pharmacy, U. of Minnesota
107
Dickerson Dodecamer (Oct. 1980) Richard Lavery Institut de Biologie Physico-Chimique, Paris
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.