Download presentation
Presentation is loading. Please wait.
Published byBrenton Bott Modified over 10 years ago
1
II Escuela de Optica Biomedica, Puebla, 2011 Use of polarized light imaging and sensing in the clinical setting Jessica C. Ramella-Roman, PhD
2
II Escuela de Optica Biomedica, Puebla, 2011 Short Bio Laura in Electrical Engineering, University of Pavia, Italy (93) MS and PhD in Electrical Engineering from Oregon Health & Science University (04) – Advisor Steve Jacques – Thesis on use of polarized light in biophotonics Post doc at Johns Hopkins, APL (04,05) – Polarized light interaction with rough surfaces
3
II Escuela de Optica Biomedica, Puebla, 2011 Short Bio cnt. Associate Professor in Biomedical Engineering (05-present) at CUA Adjunct A. Prof. Johns Hopkins School of Medicine (06-present) Guest Researcher NIST (04- present) Research – faculty.cua.edu/ramella – Tissue oximetry, retina, skin using reflectance spectroscopy and MI – Small vessel Flowmetry and structural analysis – Polarized light imaging and sensing for the detection of skin cancer, vascular abnormalities
4
II Escuela de Optica Biomedica, Puebla, 2011 Course outline Lecture 1- Introduction and fundamentals of polarimetry Lecture 2- Experimental Stokes and Mueller matrix polarimetry Lecture 3 – Modeling – Monte Carlo 1 Lecture 4 – Modeling – Monte Carlo 2 Lecture 5 – Clinical applications of polarized light sensing
5
II Escuela de Optica Biomedica, Puebla, 2011 64 Polarized light in bio-photonics Filtering mechanism Skin cancer imaging Imaging of superficial features Vasculature others *JBO 2002
6
II Escuela de Optica Biomedica, Puebla, 2011 53% absorbed ~4% parallel surface glare ~2-4% parallel, sub surface 100% parallel incidence unpolarized40% Epidermis papillary dermis reticular dermis Filtering mechanism 64 x y
7
II Escuela de Optica Biomedica, Puebla, 2011 64 53% absorbed ~4% parallel surface glare ~2-4% parallel, sub surface 100% parallel incidence unpolarized40% Epidermis papillary dermis reticular dermis Filtering mechanism-surface glare 64 x y
8
II Escuela de Optica Biomedica, Puebla, 2011 64 53% absorbed ~4% parallel surface glare ~2-4% parallel, sub surface 100% parallel incidence unpolarized40% Epidermis papillary dermis reticular dermis Filtering mechanism-single scattering Co polarized 64 x y
9
II Escuela de Optica Biomedica, Puebla, 2011 64 53% absorbed ~4% parallel surface glare ~2-4% parallel, sub surface 100% parallel incidence unpolarized40% Epidermis papillary dermis reticular dermis Filtering mechanism-multiple scattering Cross polarized 64 x y
10
II Escuela de Optica Biomedica, Puebla, 2011 64 Polarized light imaging of skin cancer H H & V
11
II Escuela de Optica Biomedica, Puebla, 2011 parper parper - + Polarized image = Par = Superficial + Deep Per = Deep Enhance superficial structures such as skin cancer margins
12
II Escuela de Optica Biomedica, Puebla, 2011 64 Polarized imaging: Basal-Cell Carcinoma Unpolarized Polarized
13
II Escuela de Optica Biomedica, Puebla, 2011 compound nevus 1-cm ruler normal pol
14
II Escuela de Optica Biomedica, Puebla, 2011 freckle normal pol
15
II Escuela de Optica Biomedica, Puebla, 2011 tattoo
16
II Escuela de Optica Biomedica, Puebla, 2011 Imaging of superficial features Polarization signature of roughness Cosmetic industry and rendering community Skin cancer Fresnel Reflection ii ss Air Skin top surface
17
II Escuela de Optica Biomedica, Puebla, 2011 17 Vasculature enhancement 53% absorbed ~4% parallel surface glare ~2-4% parallel sub surface 100% parallel incidence unpolarized40% capillary transillumination
18
II Escuela de Optica Biomedica, Puebla, 2011 Other techniques that use polarization Mueller matrix imaging - colon cancer – De Martino et al. Opt. Exp. 2011 Polarized light scattering spectroscopy – eliminate multiple scattering with co/cross polarized layout – V. Backman et al. Nature 2001 PS OCT – birefringence / structural components – De Boer, Opt. Exp. 2005 Particle sizing (….)
19
II Escuela de Optica Biomedica, Puebla, 2011 Polarization fundamentals
20
II Escuela de Optica Biomedica, Puebla, 2011 Polarization basics Polarization is a property that arises out of the transverse (and vector) nature of the electromagnetic (EM) radiation It describes the shape and the orientation of the locus of the electric field vector (Ε) extremity as a function of time, at a given point of the space *. * Ghosh et al. JBO 2011
21
II Escuela de Optica Biomedica, Puebla, 2011 Electric Field vector (EM) E ox E oy X Y Z E x, y =phases =light frequency k = 2 / ox oy, =magnitude of electric field =wavelength of light in free space
22
II Escuela de Optica Biomedica, Puebla, 2011 Polarization Ellipse 2E 0y x y
23
II Escuela de Optica Biomedica, Puebla, 2011 Jones vector formalism Advantages: - Measurement of coherence and time dependent phenomena - Speckle based techniques Disadvantage -Cannot handle depolarization x, y = phases ox oy, = magnitude of electric field
24
II Escuela de Optica Biomedica, Puebla, 2011 Jones matrix Polarized transfer of light – interaction with a medium J is a 2x2 complex matrix
25
II Escuela de Optica Biomedica, Puebla, 2011 Stokes vector formalism Intensity based representation Characterize the polarization state of light E 0x, E 0y, Cartesian electric field component = x - y phase difference
26
II Escuela de Optica Biomedica, Puebla, 2011 Stokes vector formalism Four measurable quantities (intensities) Characterize the polarization state of light G.G. Stokes (1852) Advantages: - Handles depolarization - Easy experimental application Disadvantage - Cannot handle coherence
27
II Escuela de Optica Biomedica, Puebla, 2011 Stokes vector formalism Four measurable quantities (intensities) Characterize the polarization state of light G.G. Stokes (1852) Restriction on the Stokes parameters
28
II Escuela de Optica Biomedica, Puebla, 2011 Poincaré sphere A geometrical representation of Stokes vectors Sphere with unit radius Linearly polarized states are on the equator Circularly polarized states are at the poles Partially polarized states are inside the sphere
29
II Escuela de Optica Biomedica, Puebla, 2011 Linearly polarized light = E 0x = E 0y
30
II Escuela de Optica Biomedica, Puebla, 2011 Linearly polarized light = E 0x = E 0y
31
II Escuela de Optica Biomedica, Puebla, 2011 Linearly polarized light
32
II Escuela de Optica Biomedica, Puebla, 2011 Linearly polarized light = -E 0x
33
II Escuela de Optica Biomedica, Puebla, 2011 Circularly polarized light
34
II Escuela de Optica Biomedica, Puebla, 2011 Circularly polarized light
35
II Escuela de Optica Biomedica, Puebla, 2011 Unpolarized light Unpolarized light cannot be described through a Jones vector Stokes vector and Mueller matrix formalism is mostly used in biophotonics
36
II Escuela de Optica Biomedica, Puebla, 2011 Mueller matrix i, input o, output
37
II Escuela de Optica Biomedica, Puebla, 2011 Mueller matrix cnt. i, input o, output Multiple Mueller Matrices M i
38
II Escuela de Optica Biomedica, Puebla, 2011 Scattering matrix Mie theory Spheres, spheroids, cylinders D=0.01µm Scattering must be in reference plane If not Stokes vector must be rotated onto that plane
39
II Escuela de Optica Biomedica, Puebla, 2011 Mueller Matrix from microspheres solutions *Cameron et al. JBO 2001 D= 2µm m11 m44
40
II Escuela de Optica Biomedica, Puebla, 2011 Stokes polarimetry, metrics of interest
41
II Escuela de Optica Biomedica, Puebla, 2011 Net degree of polarization
42
II Escuela de Optica Biomedica, Puebla, 2011 Unpolarized portion of the beam
43
II Escuela de Optica Biomedica, Puebla, 2011 Degree of linear polarization
44
II Escuela de Optica Biomedica, Puebla, 2011 Degree of circular polarization
45
II Escuela de Optica Biomedica, Puebla, 2011 Principal angle of polarization 2E 0y x y Polarization Ellipse
46
II Escuela de Optica Biomedica, Puebla, 2011 Tomorrow Experimental application of polarimetry Introduction to a typical Stokes vector polarimeter Introduction to a typical Mueller Matrix polarimeter
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.