Download presentation
Presentation is loading. Please wait.
Published byRobyn Sellon Modified over 9 years ago
1
Regression “A new perspective on freedom” TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAA A A A A AAA A A
2
Classification
3
? CatDog
4
Cleanliness Size
5
? $$$$$$$$$$
6
Regression
7
$ $$ $$$ $$$$ Price Top speed x y
8
Regression Data Goal: given, predict i.e. find a prediction function
9
Nearest neighbor -50510152025 -10 -5 0 5 10 15
10
Nearest neighbor To predict x –Find the data point x i closest to x –Choose y = y i + No training – Finding closest point can be expensive – Overfitting
11
Kernel Regression To predict X –Give data point x i weight –Normalize weights –Let e.g.
12
Kernel Regression -50510152025 -10 -5 0 5 10 15 [matlab demo]
13
Kernel Regression + No training + Smooth prediction – Slower than nearest neighbor – Must choose width of
14
Linear regression
15
0 10 20 30 40 0 10 20 30 20 22 24 26 Temperature [start Matlab demo lecture2.m] Given examples Predict given a new point 0 10 20 30 40 0 10 20 30 20 22 24 26 Temperature
16
0 10 20 30 40 0 10 20 30 20 22 24 26 Temperature Linear regression Prediction
17
Linear Regression Error or “residual” Prediction Observation Sum squared error
18
Linear Regression n d Solve the system (it’s better not to invert the matrix)
19
Minimize the sum squared error Sum squared error Linear equation Linear system
20
LMS Algorithm (Least Mean Squares) where Online algorithm
21
Beyond lines and planes everything is the same with still linear in 01020 0 40
22
Linear Regression [summary] n d Let For example Let Minimize by solving Given examples Predict
23
Probabilistic interpretation Likelihood
24
Overfitting 02468101214161820 -15 -10 -5 0 5 10 15 20 25 30 [Matlab demo] Degree 15 polynomial
25
Ridge Regression (Regularization) 02468101214161820 -10 -5 0 5 10 15 Effect of regularization (degree 19) with “small” Minimize Solve Let
26
Probabilistic interpretation Likelihood Prior Posterior
27
Locally Linear Regression
28
[source: http://www.cru.uea.ac.uk/cru/data/temperature] 1840186018801900192019401960198020002020 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 Global temperature increase
29
Locally Linear Regression To predict X –Give data point x i weight –Let e.g.
30
Locally Linear Regression + Good even at the boundary (more important in high dimension) – Solve linear system for each new prediction – Must choose width of To minimize Solve Predict where
31
[source: http://www.cru.uea.ac.uk/cru/data/temperature] Locally Linear Regression Gaussian kernel 180
32
[source: http://www.cru.uea.ac.uk/cru/data/temperature] Locally Linear Regression Laplacian kernel 180
33
L1 Regression
34
Sensitivity to outliers High weight given to outliers Influence function
35
L 1 Regression Linear program Influence function
36
Spline Regression Regression on each interval 5200540056005800 50 60 70
37
Spline Regression With equality constraints 5200540056005800 50 60 70
38
Spline Regression With L 1 cost 5200540056005800 50 60 70
39
To learn more The Elements of Statistical Learning, Hastie, Tibshirani, Friedman, Springer
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.