Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 An Ultra-lightweight Authentication Protocol in RFID Speaker: 魏家惠.

Similar presentations


Presentation on theme: "1 An Ultra-lightweight Authentication Protocol in RFID Speaker: 魏家惠."— Presentation transcript:

1 1 An Ultra-lightweight Authentication Protocol in RFID Speaker: 魏家惠

2 2 Outline Introduction –Environment Definition –Authenticate Analysis Related Work –First paper –Important paper between 2006 ~ 2009 –Recently paper 2009 –Security Analysis Comments

3 3 Environment Definition Chien ‘ s four class in RFID –Full-fledged Symmetric encryption Public key algorithms –Simple Random number generator One-way hashing function –Lightweight Random number generator Cyclic Redundancy Code checksum –Ultralightweigh XOR, AND, OR, Rot

4 4 Authenticate Analysis Tag Identification Mutual Authentication Index-Pseudonym Updating Key Updating –Mutual authentication –Data integrity –Tag anonymity –Tracking –Data confidentiality –Forward security –Replay attack –Man-in-the-middle attack –de-synchronization attack

5 5 First paper (M 2 AP scheme) [2006] M 2 AP A Minimalist Mutual Authentication Protocol for Low-cost RFID Tags, In: LNCS, vol. 4159. Springer. pp. 912-923,2006. ReaderTags 1. hello 2. IDS ID, IDS, K1, K2, K3 3. A ∥ B ∥ C 4. D ∥ E A=IDS ♁ K1 ♁ n1 B=(IDS ^ K2)ˇn1 C=IDS+K3+n2 D=(IDSˇK4) ^ n2 E=(IDS+ID) ♁ n1

6 6 Second paper (LMAP scheme) [2006]LMAP A Real Lightweight Mutual Authentication Protocol for Low-cost RFID tags, in Proceedings of the 2nd Workshop on RFID Security, 2006. ReaderTags 1. hello 2. IDS (ID, IDS, K1, K2, K3) next (ID, IDS, K1, K2, K3) old 3. A ∥ B ∥ C 4. D (ID, IDS, K1, K2, K3) next (ID, IDS, K1, K2, K3) old A=IDS ♁ K1 ♁ n1 B=(IDSˇK2)+n1 C=IDS+K3+n2 D=(IDS+ID) ♁ n1 ♁ n2 M 2 AP A=IDS ♁ K1 ♁ n1 B=(IDS ^ K2)ˇn1 C=IDS+K3+n2 D=(IDSˇK4) ^ n2 E=(IDS+ID) ♁ n1

7 7 Security analysis of LMAP and M 2 AP (Li and Wang ’ s Scheme) [2007] Security Analysis of Two Ultra lightweight RFID Authentication Protocol, International Federation for Information Processing, Vol. 232, pp. 109-120, 2007. Vulnerabilities of LMAP and M 2 AP –de-synchronization Changing message C –Full-disclosure Reader Tags 1. hello 2. IDS 3. A ∥ B ∥ C’ 4. D’ A=IDS ♁ K1 ♁ n1 B=(IDS V K2)+n1 C=IDS+K3+n2’ D=(IDS+ID) ♁ n1 ♁ n2’ C=(IDS+K3)+n2 D=(IDS+ID) ♁ n1 ♁ n2 C-IDS-K3=(IDS+ID) ♁ n1 ♁ D C new =(IDS+K3)+n2 new D new =(IDS+ID) ♁ n1 ♁ n2 new C new -IDS-K3=(IDS+ID) ♁ n1 ♁ D new C new -C=(IDS+ID) ♁ D new -(IDS+ID) ♁ n1 ♁ D (1) (2) (1) - (2) x ♁ a = x ♁ b + c mod 2 96 96bits/4=24 (2 24 — 1) times

8 8 Countermeasures of Li and Wang ’ s Scheme (cont.) Countermeasures –Sending `D (to solve full-disclosure attack) The tag always send a message to fool the attacker. If the reader is authenticated, it sends D=(IDS+ID) ♁ n1 ♁ n2 ; otherwise, it sends D ’ =(IDS+ID) ♁ n2 –Storing status (to solve incomplete protocol) The reader and the tag keep the status and the random number of the protocol A status bit S=0 → the protocol is completed (synchronized) A status bit S=1 → the protocol is uncompleted (desynchronized) After that can updating n1 and n2

9 9 Security analysis of Li and Wang ’ s scheme [2007]Security of ultra-lightweight RFID authentication protocols and its improvements, ACM SIGOPS Operating Systems Review, Vol.41 Issue 4, 2007. Vulnerabilities of Li Wang ’ s attacks –Sending `D (to solve full-disclosure attack) modify phase 3: successfully authenticate response D=(IDS+ID) ♁ n1 ♁ n2 next, send A ’ ∥ B ∥ C authentication will fail response D ’ =(IDS+ID) ♁ n2 D ’ ♁ D get n1 A ∥ B ∥ C D=(IDS+ID) ♁ n 1 ♁ n2 A’ ∥ B ∥ C D’=(IDS+ID) ♁ n2

10 10 Security analysis of Li and Wang ’ s attacks (cont.) Countermeasures –Sending `D (to solve full-disclosure attack) The tag extracted value (n1, n1 ’, n2) from A ∥ B ∥ C Outputs the value shift(n1,n1 ’ ) ♁ shift(n1 ’,n2) is random value D=(IDS+ID) ♁ shift(n1,n1 ’ ) ♁ shift(n1 ’,n2) –Full-disclosure modify phase 5: (1) set n1 new =0. (2) set C 1 new =C new +1 n2[1]=0, n2=000 … 00, n2 ♁ (n2+1)=000 … 01 n2[1]=1, n2=00 … 01 … 1, n2 ♁ (n2+1)=000 … 01 … 1 The attacker can determine iє[0,95], i+1 < (2 24 -1) A=IDS ♁ K1 ♁ n1 B=(IDSˇK2)+n1 C=IDS+K3+n2 D=(IDS+ID) ♁ n1 ♁ n2 A new =IDS ♁ K1 B new =IDSˇK2 D new =(IDS ♁ ID) ♁ n2 D 1 new =(IDS ♁ ID) ♁ n2+1 D new ♁ D 1 new = (n2+1) ♁ n2

11 11 Important paper [2007] SASI A New Ultra-lightweight RFID Authentication protocol providing strong authentication and strong integrity, IEEE Transactions on Dependable and Secure Computing 4(4), pp. 337-340, October, 2007. ReaderTags 1. hello 2. IDS ID, IDS, K1, K2, K3 3. A ∥ B ∥ C 4. D

12 12 Cryptanalysis of SASI [2008]Cryptanalysis of a New Ultralightweight RFID Authentication Protocol-SASI, IEEE Transactions on Dependable and Secure Computing, Vol. 6, No. 4, pp.316- 320, 2008. 8bits 固定值 ”E0” 8bits IC 廠商的編碼 (MSB) 48bits 廠商所定的獨一序號 (LSB)

13 13 Security analysis of SASI (cont.) [2009] On the Security of Chien's Ultra-Lightweight RFID Authentication Protocol, IEEE Transactions on Dependable and Secure Computing, pp.1-3, 2009. Reader Tags 1. hello 2. IDS 3. A’ ∥ B’ ∥ C’ 4. D ID, IDS 1, K1 1, K2 1, K3 1 ID, IDS 3, K1 3, K2 3, K3 3 A’ ∥ B’ ∥ C’ Attacker ID, IDS 1, K1 1, K2 1, K3 1 ID, IDS 2, K1 2, K2 2, K3 2 1st round 2st round Normal ID, IDS 1, K1 1, K2 1, K3 1 ID, IDS 3, K1 3, K2 3, K3 3 ID, IDS 0, K1 0, K2 0, K3 0 ID, IDS 1, K1 1, K2 1, K3 1 ID, IDS 0, K1 0, K2 0, K3 0 ID, IDS 1, K1 1, K2 1, K3 1 ID, IDS 0, K1 0, K2 0, K3 0 ID, IDS 1, K1 1, K2 1, K3 1 3. A’’ ∥ B’’ ∥ C’’ 3st round 1. hello 2. IDS 1 3. A’ ∥ B’ ∥ C’ 4. D’ ID, IDS 1, K1 1, K2 1, K3 1 ID, IDS 3, K1 3, K2 3, K3 3 ID, IDS 1, K1 1, K2 1, K3 1 ID, IDS 2, K1 2, K2 2, K3 2 Attacker

14 14 Recently paper [2009] An Ultra Light Authentication Protocol Resistant to Passive Attacks under the Gen-2 Specification, Journal of Information Science and Engineering 25(1), pp.33-57, 2009. –Assumption: backward and forward channel can be passively listened by an attacker. –Min-in-the-middle and other active attacks are not feasible

15 15 Comments [2009] On the Security of Chien's Ultra-Lightweight RFID Authentication Protocol, IEEE Transactions on Dependable and Secure Computing, pp.1-3, 2009. –3st is not authenticated by the reader –Because the reader generate new n2, it not equal to B ’ and C ’ [2009] An Ultra Light Authentication Protocol Resistant to Passive Attacks under the Gen-2 Specification, Journal of Information Science and Engineering 25(1):33-57, 2009. –Cryptanalysis of ULAP is the same as LMAP

16 16 Thank you


Download ppt "1 An Ultra-lightweight Authentication Protocol in RFID Speaker: 魏家惠."

Similar presentations


Ads by Google