Download presentation
Presentation is loading. Please wait.
Published byNia Fritter Modified over 9 years ago
1
CDISC ADaM 2.1 Implementation: A Challenging Next Step in the Process Presented by Tineke Callant 2014-03-14
2
2 Agenda CDISC - Introduction CDISC - Foundational standards CDISC ADaM V2.1 - Analysis data flow CDISC ADaM V2.1 - ADaM data structures CDISC ADaM V2.1 - Traceability CDISC ADaM V2.1 - ADaM metadata CHKSTRUCT macro Linear method - Challenges and solutions Take home messages
3
3 Clinical Data Interchange Standards Consortium - Introduction 1997 - Inception 2000 - 32 global companies CDISC is a global, open, multidisciplinary, non-profit organization that has established standards to support the acquisition, exchange, submission and archive of clinical research data and metadata. 2014 - ± 200 organizations biotechnology and pharmaceutical development companies device and diagnostic companies CROs and technology providers government institutions, academic research centers and other non-profit organizations
4
4 Clinical Data Interchange Standards Consortium - Introduction
5
5 Mission statement The CDISC mission is to develop and support global, platform-independent data standards that enable information system interoperability to improve medical research and related areas of healthcare. Data standards to improve clinical research
6
6 Clinical Data Interchange Standards Consortium - Introduction - 2001: Biomedical Research Integrated Domain Group (BRIDG) Model
7
7 Agenda CDISC - Introduction CDISC - Foundational standards CDISC ADaM V2.1 - Analysis data flow CDISC ADaM V2.1 - ADaM data structures CDISC ADaM V2.1 - Traceability CDISC ADaM V2.1 - ADaM metadata CHKSTRUCT macro Linear method - Challenges and solutions Take home messages
8
8 CDISC - Foundational standards
9
9 content transport
10
10 CDISC - Foundational standards
11
11 CDISC - Foundational standards Study Data Tabulation Model (SDTM) The content standard for regulatory submission of case report form data tabulations from clinical research studies. Datasets containing data collected during the study and organized by clinical domain. Analysis Data Model (ADaM) The content standard for regulatory submission of analysis datasets and associated files. Datasets used for statistical analysis and reporting by the sponsor, submitted in addition to the SDTM domains.
12
12 Agenda CDISC - Introduction CDISC - Foundational standards CDISC ADaM V2.1 - Analysis data flow CDISC ADaM V2.1 - ADaM data structures CDISC ADaM V2.1 - Traceability CDISC ADaM V2.1 - ADaM metadata CHKSTRUCT macro Linear method - Challenges and solutions Take home messages
13
13 CDISC ADaM V2.1 - Analysis data flow ADaM
14
14 Agenda CDISC - Introduction CDISC - Foundational standards CDISC ADaM V2.1 - Analysis data flow CDISC ADaM V2.1 - ADaM data structures CDISC ADaM V2.1 - Traceability CDISC ADaM V2.1 - ADaM metadata CHKSTRUCT macro Linear method - Challenges and solutions Take home messages
15
15 CDISC ADaM V2.1 - ADaM data structures The Subject-Level Analysis Dataset (ADSL) structure The Basic Data Structure (BDS) Other
16
16 CDISC ADaM V2.1 - ADaM data structures The Subject-Level Analysis Dataset (ADSL) structure One record per subject Variables (required + other) Study identifiers (e.g. DM.STUDYID) Subject demographics (e.g. DM.AGE) Population indicator(s) (e.g. RANDFL) Treatment variables (e.g. DM.ARM) Trial dates (e.g. RANDDT) Required in a CDISC-based submission
17
17 CDISC ADaM V2.1 - ADaM data structures The Subject-Level Analysis Dataset (ADSL) structure The Basic Data Structure (BDS) Other
18
18 CDISC ADaM V2.1 - ADaM data structures The Basic Data Structure (BDS) One or more records per subject, per analysis parameter, per analysis time point (conditionally required) Variables e.g. PARAM and related variables e.g. AVAL and AVALC and related variables e.g. the subject identification e.g. DTYPE e.g. treatment variables, covariates Supports the majority of statistical analyses
19
19 CDISC ADaM V2.1 - ADaM data structures The Subject-Level Analysis Dataset (ADSL) structure The Basic Data Structure (BDS) Other
20
20 CDISC ADaM V2.1 - ADaM data structures Other CDISC ADaM Basic Data Structure for Time-to-Event Analysis Version 1.0 - May 8, 2012 CDISC ADaM Data Structure for Adverse Event Analysis Version 1.0 - May 10, 2012
21
21 Agenda CDISC - Introduction CDISC - Foundational standards CDISC ADaM V2.1 - Analysis data flow CDISC ADaM V2.1 - ADaM data structures CDISC ADaM V2.1 - Traceability CDISC ADaM V2.1 - ADaM metadata CHKSTRUCT macro Linear method - Challenges and solutions Take home messages
22
22 CDISC ADaM V2.1 - Analysis data flow ADaM
23
23 Understanding the relationship of element vs. predecessor Enabling transparancy Analysis results → Analysis datasets → SDTM CDISC ADaM V2.1 - Traceability
24
24 CDISC ADaM V2.1 - Traceability Strategies for implementing SDTM and ADaM standards Susan Kenny – Michael Litzsinger Parallel method SDTM Domains DBMS Extract Analysis Datasets Retrospective method DBMS Extract → Analysis Datasets → SDTM Domains Linear method DBMS Extract → SDTM Domains → Analysis Datasets Hybrid method DBMS Extract → SDTM Draft Domains → Analysis Datasets → SDTM Final Domains
25
25 CDISC ADaM V2.1 - Traceability Traceability
26
26 CDISC ADaM V2.1 - Traceability CDISC ADaM V2.1 Fundamental principles –Provide traceability between the analysis data and its source data Practical considerations –Maintain the values and attributes of SDTM variables CDISC ADaM implementation guide (IG) V1.0 General variable naming conventions
27
27 CDISC ADaM V2.1 - Traceability General variable naming conventions Any ADaM variable whose name is the same as an SDTM variable must be a copy of the SDTM variable, and its label, meaning, and values must not be modified
28
28 Parallel method SDTM Domains DBMS Extract Analysis Datasets Retrospective method DBMS Extract → Analysis Datasets → SDTM Domains Linear method DBMS Extract → SDTM Domains → Analysis Datasets Hybrid method DBMS Extract → SDTM Draft Domains → Analysis Datasets → SDTM Final Domains CDISC ADaM V2.1 - Traceability Strategies for implementing SDTM and ADaM standards Susan Kenny – Michael Litzsinger
29
29 Linear method DBMS Extract → SDTM Domains → Analysis Datasets Traceability CDISC SDTM/ADaM Pilot Project Recommended CDISC ADaM V2.1 - Traceability Strategies for implementing SDTM and ADaM standards Susan Kenny – Michael Litzsinger
30
30 Hybrid method DBMS Extract → SDTM Draft Domains → Analysis Datasets → SDTM Final Domains Traceability Amendment 1 SDTM V1.2 and SDTM IG V3.1.2 Future?!? CDISC ADaM V2.1 - Traceability Strategies for implementing SDTM and ADaM standards Susan Kenny – Michael Litzsinger
31
31 Traceability → Recommended: Linear method Flexible Delivery of consistent analysis datasets Easy to use (Excel file) Easy to maintain (Excel file) CDISC ADaM V2.1 - Traceability
32
32 Agenda CDISC - Introduction CDISC - Foundational standards CDISC ADaM V2.1 - Analysis data flow CDISC ADaM V2.1 - ADaM data structures CDISC ADaM V2.1 - Traceability CDISC ADaM V2.1 - ADaM metadata CHKSTRUCT macro Linear method - Challenges and solutions Take home messages
33
33 CDISC ADaM V2.1 - ADaM metadata Microsoft Office Excel spreadsheet as framework Metadata
34
34 CDISC ADaM V2.1 - ADaM metadata Microsoft Office Excel spreadsheet as framework analysis dataset %CHKSTRUCT(ds_ = ) Automatization Compliance define.xml
35
35 CDISC ADaM V2.1 - ADaM metadata Analysis dataset metadata Analysis variable metadata Analysis parameter value-level metadata Analysis results metadata
36
36 CDISC ADaM V2.1 - ADaM metadata Analysis dataset metadata Illustration from CDISC ADaM V2.1 Practical consideration: ADxxxxxx ! ≠ SDTM ! The key variables should define uniqueness
37
37 Analysis dataset naming convention ADxxxxxx The subject-level analysis dataset is named ADSL max. 8 characters CDISC ADaM V2.1 - ADaM metadata Analysis dataset metadata
38
38 CDISC ADaM V2.1 - ADaM metadata Analysis dataset metadata Analysis variable metadata Analysis parameter value-level metadata Analysis results metadata
39
39 Illustration from CDISC ADaM V2.1 CDISC ADaM V2.1 - ADaM metadata Analysis variable metadata
40
40 CDISC ADaM V2.1 - ADaM metadata Analysis dataset metadata Analysis variable metadata Analysis parameter value-level metadata Analysis results metadata
41
41 Illustration from CDISC ADaM V2.1 CDISC ADaM V2.1 - ADaM metadata Analysis parameter value-level metadata
42
42 CDISC ADaM V2.1 - ADaM metadata Analysis dataset metadata Analysis variable metadata Analysis parameter value-level metadata Analysis results metadata (not required)
43
43 CDISC ADaM V2.1 - ADaM metadata Analysis variable metadata in practice Analysis dataset metadata Analysis variable metadata Dataset nameDisplay format Variable nameCodelist / Controlled terms Variable labelSource / Derivation Variable type Parameter identifier (Basic Data Structure (BDS)) Analysis results metadata (not required)
44
44 CDISC ADaM V2.1 - ADaM metadata Microsoft Office Excel spreadsheet as framework Metadata
45
45 CDISC ADaM V2.1 - ADaM metadata Analysis variable metadata in practice SAS variable attributes To work in a SAS environment –NAME –TYPE –LENGTH –FORMAT –INFORMAT –LABEL –POSITION IN OBSERVATION –INDEX TYPE Analysis variable metadata fields –DATASET NAME –VARIABLE NAME –VARIABLE LABEL –VARIABLE TYPE –DISPLAY FORMAT –CODELIST / CONTROLLED TERMS –SOURCE / DERIVATION –BASIC DATA STRUCTURE: PARAMETER IDENTIFIER
46
46 Example CDISC ADaM V2.1 - ADaM metadata Analysis variable metadata in practice...
47
47 CDISC ADaM V2.1 - ADaM metadata Analysis variable metadata in practice - Subposition in observation Example ADSL – SITEGR* (Char) and SITEGR*N (Num) * = a single digit [1-9] SITEID SITEID grouped together by city in the variable SITEGR1 (SITEGR1N) SITEID grouped together by province in the variable SITEGR2 (SITEGR2N)
48
48 CDISC ADaM V2.1 - ADaM metadata Analysis variable metadata in practice - Subposition in observation %CHKSTRUCT(ds_ = ADSL) 1212 ORDER
49
49 CDISC ADaM V2.1 - ADaM metadata Analysis variable metadata in practice - Subposition in observation ORDER 1 2 1 2
50
50 CDISC ADaM V2.1 - ADaM metadata Analysis variable metadata in practice - Subposition in observation Example ADSL – SITEGR* (Char) and SITEGR*N (Num) * = a single digit [1-9] POSITION IN OBSERVATION SUBPOSITION IN OBSERVATION VARIABLE NAME 1STUDYID 2USUBJID 3SITEID 41SITEGR* 42SITEGR*N
51
51 Example CDISC ADaM V2.1 - ADaM metadata Analysis variable metadata in practice Example...
52
52 CDISC SDTMCDISC ADaM Req - Required The variable must be included in the dataset and cannot be null for any record. Req - Required The variable must be included in the dataset. Exp - Expected... and may contain some null values. Cond - Conditionally required... in certain circumstances. Perm - Permissible The variable should be used in a domain as appropriate when collected or derived. Perm - Permissible The variable may be included in the dataset, but is not required. CDISC ADaM V2.1 - ADaM metadata Analysis variable metadata in practice - Core Nulls are allowed
53
53 Agenda CDISC - Introduction CDISC - Foundational standards CDISC ADaM V2.1 - Analysis data flow CDISC ADaM V2.1 - ADaM data structures CDISC ADaM V2.1 - Traceability CDISC ADaM V2.1 - ADaM metadata CHKSTRUCT macro Linear method - Challenges and solutions Take home messages
54
54 CHKSTRUCT macro Microsoft Office Excel spreadsheet as framework analysis dataset %CHKSTRUCT(ds_ = ) Automatization Compliance define.xml
55
55 CHKSTRUCT macro - Automatization %CHKSTRUCT(ds_ = ADSL) Before After 4 6 5 7 1 2 3 1 2 3 4 5 6 7 ORDER THE ANALYSIS VARIABLES
56
56 CHKSTRUCT macro - Automatization %CHKSTRUCT(ds_ = ADSL) Before After LABEL THE ANALYSIS VARIABLES
57
57 CHKSTRUCT macro - Automatization %CHKSTRUCT(ds_ = ADSL) Key variables 7 2 1 3 4 5 6 9 8 10 5 1 2 3 4 6 7 8 9 Key variables Before After SORT THE ANALYSIS DATASET
58
58 CHKSTRUCT macro – Compliance Analysis datasetAnalysis variable metadata
59
59 CHKSTRUCT macro – Compliance Analysis datasetAnalysis variable metadata
60
60 CHKSTRUCT macro – Compliance Analysis datasetAnalysis variable metadata
61
61 CHKSTRUCT macro Excel spreadsheet as framework Purpose Reference Automatization Compliance
62
62 Agenda CDISC - Introduction CDISC - Foundational standards CDISC ADaM V2.1 - Analysis data flow CDISC ADaM V2.1 - ADaM data structures CDISC ADaM V2.1 - Traceability CDISC ADaM V2.1 - ADaM metadata CHKSTRUCT macro Linear method - Challenges and solutions Take home messages
63
63 Linear method - Challenges and solutions Step 1
64
64 Linear method - Challenges and solutions Step 1 - CDISC SDTM Implementation Guide...
65
65 Linear method - Challenges and solutions Step 1 - CDISC SDTM Implementation Guide Any ADaM variable whose name is the same as an SDTM variable must be a copy of the SDTM variable, and its label, meaning, and values must not be modified
66
66 Linear method - Challenges and solutions Step 1 - CDISC SDTM Implementation Guide Challenge: Flexible variable length...
67
67 Linear method - Challenges and solutions Step 1 - CDISC SDTM Implementation Guide Challenge: Flexible variable length CDISC SDTM IG Variables of the same name in split datasets should have the same SAS Length attribute Version 5 SAS transport file format: max. 200 characters -- TESTCD and QNAM: max. 8 characters -- TEST and QLABEL: max. 40 characters Example: DM.RACE: $41, $50, and $200 Amendment 1 to SDTM V1.2 and SDTM IG V3.1.2 Version 5 SAS transport file format: max. 200 characters ! only if necessary !
68
68 Traceability Flexible Delivery of consistent analysis datasets Easy to use Easy to maintain Linear method - Challenges and solutions Step 1 - CDISC SDTM Implementation Guide Challenge: Flexible variable length
69
69 Linear method - Challenges and solutions Step 1 - CDISC SDTM Implementation Guide Solution: [sdtm] ↔ %CHKSTRUCT(ds_ = )
70
70 Example: LB.LBSCAT Linear method - Challenges and solutions Step 1 - CDISC SDTM Implementation Guide Challenge: Permissible variables Solution: [sdtm] ↔ %CHKSTRUCT(ds_ = )
71
71 Linear method - Challenges and solutions Step 2
72
72 Linear method - Challenges and solutions Step 2 - SUPP-- QNAM→ variable name QLABEL→ variable label QVAL→ variable type → variable length e.g. SUPPDM SDTM datasete.g. ADSL ADaM dataset
73
73 Linear method - Challenges and solutions Step 2 - SUPP-- Challenge: Flexible code list QLABEL is different for the same QNAM –Example ELIGCONF Subject Still Eligible ELIGCONF Still Fulfill Eligibility Criteria QLABEL format –Example RANDNO RANDOMIZATION NUMBER RANDNO Randomization Number QLABEL changes during the course of a study –Example ELIGIBLE Suject Eligible For Dosing ELIGIBLE Subject Eligible For Dosing
74
74 Linear method - Challenges and solutions Step 2 - SUPP-- Solution: [supp] ↔ %CHKSTRUCT(ds_ = )
75
75 Linear method - Challenges and solutions Step 3
76
76 Linear method - Challenges and solutions - Step 3 ADaM
77
77 Linear method - Challenges and solutions - Step 3 Challenge: 12 SDTM → 12 ADaM?!? 1 3 2 4 5 6 8 7 910 SDTM 12 11 ADaM ? ? ?? ? ? ? ? ? ? ? ?
78
78 Linear method - Challenges and solutions - Step 3 Solution: 1 central model + sponsor specific add-ons sponsor specific add-on central ADaM model domlist.sas7bdat varlist.sas7bdat codelist.sas7bdat domlist.sas7bdat varlist.sas7bdat codelist.sas7bdat domlist.sas7bdat varlist.sas7bdat codelist.sas7bdat 1 1 Convert Excel file to SAS datasets (by ADaM administrator) 2 2 Combine central model and sponsor specific add-on (by study programmer) 1
79
79 Traceability Flexible Delivery of consistent analysis datasets Easy to use Easy to maintain Linear method - Challenges and solutions - Step 3 Solution: 1 central model + sponsor specific add-ons
80
80 Linear method - Challenges and solutions Step 4
81
81 Linear method - Challenges and solutions - Step 4 Challenge: SDTM model no. 1, 2, 3... ? 1 3 2 4 5 6 8 7 910 SDTM 12 11 ADaM ? ? ?? ? ? ? ? ? ? ? ?
82
82 Linear method - Challenges and solutions - Step 4 Solution: Central metadata repository CDISC metadata SDTM version SDTM metadata ... Study characteristics Therapeutic area Clinical phase Trial design characteristics ... Project metadata Study timelines Key Performance Indicators ...
83
83 Linear method - Challenges and solutions Step 5
84
84 Linear method - Challenges and solutions – Step 5 Challenge: Future
85
85 Linear method - Challenges and solutions – Step 5 Challenge: Future
86
86 Agenda CDISC - Introduction CDISC - Foundational standards CDISC ADaM V2.1 - Analysis data flow CDISC ADaM V2.1 - ADaM data structures CDISC ADaM V2.1 - Traceability CDISC ADaM V2.1 - ADaM metadata CHKSTRUCT macro Linear method - Challenges and solutions Take home messages
87
87 Take home messages Message no. 1 ADaM SDTM SDTM and ADaM go hand in hand Thus, without a CDISC compliant SDTM database to start from, ADaM cannot exist But do realize a strong analysis data model needs more than a CDISC compliant SDTM database alone
88
88 Linear method: Recommended Challenging Solution: SDTM: Central metadata repository ADaM: Automatization, e.g. [sdtm], [supp] … Study medata differences are handled efficiently Take home messages Message no. 2
89
89 E-mail: tineke.callant@sgs.com Internet: www.sgs.com/cro
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.