Download presentation
Published byKaylee Lomas Modified over 9 years ago
1
Kondo Physics from a Quantum Information Perspective
Pasquale Sodano International Institute of Physics, Natal, Brazil
2
Sougato Bose UCL (UK) Abolfazl Bayat UCL (UK) Henrik Johannesson Gothenburg (Sweden)
3
References An order parameter for impurity systems at quantum criticality A. Bayat, H. Johannesson, S. Bose, P. Sodano To appear in Nature Communication. Entanglement probe of two-impurity Kondo physics in a spin chain A. Bayat, S. Bose, P. Sodano, H. Johannesson, Phys. Rev. Lett. 109, (2012) Entanglement Routers Using Macroscopic Singlets A. Bayat, S. Bose, P. Sodano, Phys. Rev. Lett. 105, (2010) Negativity as the Entanglement Measure to Probe the Kondo Regime in the Spin-Chain Kondo Model A. Bayat, P. Sodano, S. Bose, Phys. Rev. B 81, (2010) Kondo Cloud Mediated Long Range Entanglement After Local Quench in a Spin Chain P. Sodano, A. Bayat, S. Bose Phys. Rev. B 81, (R) (2010)
4
Contents of the Talk Negativity as an Entanglement Measure
Single Kondo Impurity Model Application: Quantum Router Two Impurity Kondo model: Entanglement Two Impurity Kondo model: Entanglement Spectrum
5
Entanglement of Mixed States
Separable states: Entangled states: How to quantify entanglement for a general mixed state? There is not a unique entanglement measure
6
Negativity Separable: Valid density matrix Entangled: Negativity:
7
Gapped Systems Excited states Ground state The intrinsic length scale of the system impose an exponential decay
8
Gapless Systems Continuum of excited states Ground state There is no length scale in the system so correlations decay algebraically
9
Kondo Physics Despite the gapless nature of the Kondo system, we have a length scale in the model
10
Realization of Kondo Effect
Semiconductor quantum dots D. G. Gordon et al. Nature 391, 156 (1998). S.M. Cronenwett, Science 281, 540 (1998). Carbon nanotubes J. Nygard, et al. Nature 408, 342 (2000). M. Buitelaar, Phys. Rev. Lett. 88, (2002). Individual molecules J. Park, et al. Nature 417, 722 (2002). W. Liang, et al, Nature 417, 725–729 (2002).
11
Kondo Spin Chain E. S. Sorensen et al., J. Stat. Mech., P08003 (2007)
12
Entanglement as a Witness of the Cloud
B Impurity L
13
Entanglement versus Length
Entanglement decays exponentially with length
14
Scaling Impurity A B L N-L-1 Kondo Regime: Dimer Regime:
15
Scaling of the Kondo Cloud
Kondo Phase: Dimer Phase:
16
Application: Quantum Router
Converting useless entanglement into useful one through quantum quench
17
Simple Example
18
Extended Singlet With tuning J’ we can generate a proper cloud which
extends till the end of the chain
19
Quench Dynamics
20
Attainable Entanglement
1- Entanglement dynamics is very long lived and oscillatory 2- maximal entanglement attains a constant values for large chains 3- The optimal time which entanglement peaks is linear
21
Distance Independence
For simplicity take a symmetric composite:
22
Optimal Quench
23
Optimal Parameter
24
Non-Kondo Singlets (Dimer Regime)
Clouds are absent K: Kondo (J2=0) D: Dimer (J2=0.42)
25
Asymmetric Chains
26
Entanglement in Asymmetric Chains
Symmetric geometry gives the best output
27
Entanglement Router
28
Two Impurity Kondo Model
29
Two Impurity Kondo Model
RKKY interaction
30
Impurities Entanglement
31
Entanglement of Impurities
Entanglement can be used as the order parameter for differentiating phases
32
Scaling at the Phase Transition
The critical RKKY coupling scales just as Kondo temperature does
33
Entropy of Impurities Triplet Identity Singlet
34
Impurity-Block Entanglement
35
Block-Block Entanglement
36
2nd Order Phase Transition
37
Order Parameter for Two Impurity Kondo Model
38
Order Parameter Order parameter is: 1- Observable
2- Is zero in one phase and non-zero in the other 3- Scales at criticality Landau-Ginzburg paradigm: 4- Order parameter is local 5- Order parameter is associated with a symmetry breaking
39
Entanglement Spectrum
40
Entanglement Spectrum
NA=NB=400 J’=0.4 NA=600, NB=200 J’=0.4
41
Schmidt Gap Schmidt gap:
42
Thermodynamic Behaviour
J’=0.4 J’=0.5 In the thermodynamic limit Schmidt gap takes zero in the RKKY regime
43
In the thermodynamic limit the first derivative of
Diverging Derivative In the thermodynamic limit the first derivative of Schmidt gap diverges
44
Diverging Kondo Length
45
Finite Size Scaling
46
Schmidt Gap as an Observable
47
Summary Negativity is enough to determine the Kondo length and the
scaling of the Kondo impurity problems. By tuning the Kondo cloud one can route distance independent entanglement between multiple users via a single bond quench. Negativity also captures the quantum phase transition in two impurity Kondo model. Schmidt gap, as an observable, shows scaling with the right exponents at the critical point of the two Impurity Kondo model.
48
References An order parameter for impurity systems at quantum criticality A. Bayat, H. Johannesson, S. Bose, P. Sodano To appear in Nature Communication. Entanglement probe of two-impurity Kondo physics in a spin chain A. Bayat, S. Bose, P. Sodano, H. Johannesson, Phys. Rev. Lett. 109, (2012) Entanglement Routers Using Macroscopic Singlets A. Bayat, S. Bose, P. Sodano, Phys. Rev. Lett. 105, (2010) Negativity as the Entanglement Measure to Probe the Kondo Regime in the Spin-Chain Kondo Model A. Bayat, P. Sodano, S. Bose, Phys. Rev. B 81, (2010) Kondo Cloud Mediated Long Range Entanglement After Local Quench in a Spin Chain P. Sodano, A. Bayat, S. Bose Phys. Rev. B 81, (R) (2010)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.