Presentation is loading. Please wait.

Presentation is loading. Please wait.

Electrons in Atoms Chap. 5.

Similar presentations


Presentation on theme: "Electrons in Atoms Chap. 5."— Presentation transcript:

1 Electrons in Atoms Chap. 5

2 Light (electromagnetic radiation)

3 Light (electromagnetic radiation)
A. Two components

4 Light (electromagnetic radiation)
A. Two components Electrical wave

5 Light (electromagnetic radiation)
A. Two components Electrical wave Magnetic wave

6 Light (electromagnetic radiation)
A. Two components B. Two natures

7 Light (electromagnetic radiation)
A. Two components B. Two natures Particle

8 Light (electromagnetic radiation)
A. Two components B. Two natures Particle Wave

9 Light Characteristics of a Light Wave

10 Light Characteristics of a Light Wave wavelength

11 Light Characteristics of a Light Wave wavelength
The distance between successive wave crests

12 Light Characteristics of a Light Wave wavelength frequency
The time it takes a wave to pass a given point

13 Light Characteristics of a Light Wave wavelength frequency amplitude
The height of a wave

14 Light Characteristics of a Light Wave wavelength frequency amplitude
speed

15 Light Characteristics of a Light Wave The Wave Equation

16 Light Characteristics of a Light Wave The Wave Equation
inverse relation of wavelength and frequency

17 Light Characteristics of a Light Wave The Wave Equation
inverse relation of wavelength and frequency check the units

18 The Wave Equation c = λ x υ

19 Self Check – Ex. 1 A light wave has a frequency of 2.6 x 1014 Hz. What is the wavelength?

20 Self Check – Ex. 2 What is the frequency of light with a wavelength of m?

21 Light Characteristics of a Light Wave The Wave Equation
Planck’s Equation

22 Planck’s Equation E = h x υ h = 6.63 x J·s

23 Self Check – Ex. 3 A light photon has 4.2 x J of energy. What is the frequency of this light?

24 Self Check – Ex. 4 How much energy does a photon of orange light have (λ = 630 nm)? 109 nm = 1 m

25 Light Characteristics of a Light Wave The Wave Equation
Planck’s Equation The Electromagnetic Spectrum

26 Electromagnetic Spectrum
Long waves Short waves

27 Electromagnetic Spectrum
Long waves Short waves Radio waves

28 Electromagnetic Spectrum
Long waves Short waves Radio waves Micro-waves

29 Electromagnetic Spectrum
Long waves Short waves Radio waves Infra-red Micro-waves

30 Electromagnetic Spectrum
Long waves Short waves Radio waves Infra-red Micro-waves Visible

31 Electromagnetic Spectrum
Long waves Short waves Radio waves Infra-red Ultra-violet Micro-waves Visible

32 Electromagnetic Spectrum
Long waves Short waves Radio waves Infra-red Ultra-violet Micro-waves Visible X-rays

33 Electromagnetic Spectrum
Long waves Short waves Radio waves Infra-red Ultra-violet Gamma rays Micro-waves Visible X-rays

34 Emission Spectra

35 Emission Spectra Definition

36 The various types of light given off when an atom is excited
Emission Spectrum: The various types of light given off when an atom is excited

37 Emission Spectra Definition Examples

38 Hydrogen’s Spectrum Note – only a few colors are present 400 nm 500 nm

39 Mercury’s Spectrum 400 nm 500 nm 600 nm 700 nm

40 Neon’s Spectrum 400 nm 500 nm 600 nm 700 nm

41 Emission Spectra Definition Examples Explanation – Bohr’s Model

42 Bohr’s Model of an Atom e-

43 Bohr’s Model of an Atom e-
Electrons orbit the nucleus (like planets orbiting the sun) e-

44 Bohr’s Model of an Atom e-
Electrons must be in a specific orbit (never between orbits) e- n=1 n=2 n=3

45 Bohr’s Model of an Atom e-
Electron wants to be in the lowest unoccupied level e-

46 Bohr’s Model of an Atom e-
The energy of the electrons depends on the distance from the nucleus e- high energy low energy

47 Bohr’s Model of an Atom e-
Light is emitted when electrons fall to lower energy levels e-

48 Bohr’s Model of an Atom Only certain sized falls are permitted. e-

49 Hydrogen’s Spectrum What is the energy for each line produced? Color
410 nm 486 nm 656 nm 434 nm Color Wavelength Frequency Energy Red 6.56x10-7 m Green 4.86x10-7 m Blue 4.34x10-7 m Purple 4.10x10-7 m

50 Hydrogen’s Spectrum What is the energy for each line produced? Color
410 nm 486 nm 656 nm 434 nm Color Wavelength Frequency Energy Red 6.56x10-7 m 4.57x1014 Hz Green 4.86x10-7 m 6.17x1014 Hz Blue 4.34x10-7 m 6.91x1014 Hz Purple 4.10x10-7 m 7.32x1014 Hz

51 Hydrogen’s Spectrum What is the energy for each line produced? Color
410 nm 486 nm 656 nm 434 nm Color Wavelength Frequency Energy Red 6.56x10-7 m 4.57x1014 Hz 3.03x10-19 J Green 4.86x10-7 m 6.17x1014 Hz 4.09x10-19 J Blue 4.34x10-7 m 6.91x1014 Hz 4.58x10-19 J Purple 4.10x10-7 m 7.32x1014 Hz 4.85x10-19 J

52 III. A new model

53 III. A new model A. Quantum Mechanics
Electrons’ location cannot be accurately determined

54 III. A new model A. Quantum Mechanics 1. Orbitals

55 Orbital A region of space around the nucleus where an electron is likely to be found.

56 Types of Orbitals s orbital

57 Types of Orbitals s orbital p orbitals

58 Types of Orbitals s orbital p orbitals d orbitals

59 Types of Orbitals s orbital p orbitals d orbitals f orbitals

60 III. A new model A. Quantum Mechanics Orbitals Sublevels

61 Sub-level A group of orbitals that have the same shape and energy.

62 III. A new model A. Quantum Mechanics Orbitals Sublevels
A few examples

63 III. A new model A. Quantum Mechanics Orbitals Sublevels
A few examples Their electron capacity

64 Sublevels Capacity Each orbital can hold 2 electrons

65 Sublevels Capacity Each orbital can hold 2 electrons
An ‘s’ sublevel is made of ONE orbital, so it holds ___ electrons

66 Sublevels Capacity Each orbital can hold 2 electrons
An ‘s’ sublevel is made of ONE orbital, so it holds _2_ electrons

67 Sublevels Capacity Each orbital can hold 2 electrons
An ‘s’ sublevel is made of ONE orbital, so it holds _2_ electrons A ‘p’ sublevel is made of THREE orbitals, so it holds ___ electrons

68 Sublevels Capacity Each orbital can hold 2 electrons
An ‘s’ sublevel is made of ONE orbital, so it holds _2_ electrons A ‘p’ sublevel is made of THREE orbitals, so it holds _6_ electrons

69 Sublevels Capacity Each orbital can hold 2 electrons
An ‘s’ sublevel is made of ONE orbital, so it holds _2_ electrons A ‘p’ sublevel is made of THREE orbitals, so it holds _6_ electrons A ‘d’ sublevel is made of FIVE orbitals, so it holds ____ electrons

70 Sublevels Capacity Each orbital can hold 2 electrons
An ‘s’ sublevel is made of ONE orbital, so it holds _2_ electrons A ‘p’ sublevel is made of THREE orbitals, so it holds _6_ electrons A ‘d’ sublevel is made of FIVE orbitals, so it holds _10_ electrons

71 Sublevels Capacity Each orbital can hold 2 electrons
An ‘s’ sublevel is made of ONE orbital, so it holds _2_ electrons A ‘p’ sublevel is made of THREE orbitals, so it holds _6_ electrons A ‘d’ sublevel is made of FIVE orbitals, so it holds _10_ electrons An ‘f’ sublevel is made of SEVEN orbitals, so it holds ____ electrons

72 Sublevels Capacity Each orbital can hold 2 electrons
An ‘s’ sublevel is made of ONE orbital, so it holds _2_ electrons A ‘p’ sublevel is made of THREE orbitals, so it holds _6_ electrons A ‘d’ sublevel is made of FIVE orbitals, so it holds _10_ electrons An ‘f’ sublevel is made of SEVEN orbitals, so it holds _14_ electrons

73 III. A new model A. Quantum Mechanics Orbitals Sublevels
A few examples Their electron capacity The ordered list

74 III. A new model B. Arrangement of electrons

75 III. A new model B. Arrangement of electrons Aufbau principle
Electrons fill the lowest energy level first.

76 III. A new model B. Arrangement of electrons Aufbau principle
Pauli Exclusion Principle Two electrons per orbital with opposite spin

77 III. A new model B. Arrangement of electrons Aufbau principle
Pauli Exclusion Principle Hund’s Rule Half fill all orbitals in a sublevel before completely filling them

78 III. A new model B. Arrangement of electrons Aufbau principle
Pauli Exclusion Principle Hund’s Rule A pictorial representation ‘The Aufbau Hotel’

79 IV. Orbital Diagrams A representation of the electrons in an atom

80 IV. Orbital Diagrams Boxes represent . . .

81 IV. Orbital Diagrams Boxes represent . . .
An ‘f’ sublevel should have 7 boxes

82 IV. Orbital Diagrams Boxes represent . . .
An ‘f’ sublevel should have 7 boxes ‘d’ = 5 boxes

83 IV. Orbital Diagrams Boxes represent . . .
An ‘f’ sublevel should have 7 boxes ‘d’ = 5 boxes ‘p’ = 3 boxes

84 IV. Orbital Diagrams Boxes represent . . .
An ‘f’ sublevel should have 7 boxes ‘d’ = 5 boxes ‘p’ = 3 boxes ‘s’ = 1 box

85 IV. Orbital Diagrams Boxes represent . . . Arrows represent . . .

86 IV. Orbital Diagrams Boxes represent . . . Arrows represent . . .
These boxes are filled in a specific order See Aufbau, Pauli Exclusion, and Hund above

87 Self Check – Ex. 5 Write the orbital diagrams for: Fluorine Vanadium
Germanium

88 V. Electron Configuration
A shorthand notation of electron positions in an atom

89 V. Electron Configuration
Number represents energy level

90 V. Electron Configuration
Number represents energy level Letter shows the type of sublevel

91 V. Electron Configuration
Number represents energy level Letter shows the type of sublevel Electrons are counted and written as an exponent

92 V. Electron Configuration
The ordered list

93 V. Electron Configuration
The ordered list 1s22s22p63s23p64s23d104p65s24d105p66s24f145d106p67s25f146d107p6

94 Self Check – Ex. 6 Write the electron configurations for: Magnesium
Sulfur Silver

95 VI. Electron Config. using P.T.

96 VI. Electron Config. using P.T.
The s-block

97 VI. Electron Config. using P.T.
The s-block The p-block

98 VI. Electron Config. using P.T.
The s-block The p-block The d-block

99 VI. Electron Config. using P.T.
The s-block The p-block The d-block The f-block

100 VI. Electron Config. using P.T.
The s-block The p-block The d-block The f-block The order of sublevels (made easy!)

101 Self Check – Ex. 7 Use your P.T. to write electron configurations for:
Potassium Arsenic Rhodium

102 VII. Electron Config. using abbreviations

103 VII. Electron Config. using abbreviations
Abbreviate the previous noble gas in brackets

104 VII. Electron Config. using abbreviations
Abbreviate the previous noble gas in brackets Write configuration of remaining electrons

105 Self Check – Ex. 8 Write the abbreviated electron configurations for:
Iridium Terbium Radon

106 VII. Exceptions to Aufbau

107 VII. Exceptions to Aufbau
Copper 1s22s22p63s23p64s13d9

108 VII. Exceptions to Aufbau
Copper Chromium 1s22s22p63s23p64s13d5

109 VII. Exceptions to Aufbau
Copper Chromium There are others

110 IX. Lewis Dot Diagrams A diagram that uses dots to represent valence electrons

111 IX. Lewis Dot Diagrams Valence electron

112 IX. Lewis Dot Diagrams Valence electron
The outermost electrons (the ones that bond)

113 IX. Lewis Dot Diagrams Valence electron
The outermost electrons (the ones that bond) Determined by adding the highest energy s and p electrons

114 Self Check – Ex. 9 How many valence electrons do the following have?
Nitrogen Arsenic Chlorine

115 IX. Lewis Dot Diagrams Valence electron
We write these for representative elements Representative elements are found in the ‘s’ and ‘p’ blocks

116 Self Check – Ex. 5 Write Lewis structures for: Strontium Iodine
1s22s22p63s23p64s23d104p65s24d105p3

117 The End


Download ppt "Electrons in Atoms Chap. 5."

Similar presentations


Ads by Google