Download presentation
Presentation is loading. Please wait.
1
Electrons in Atoms Chap. 5
2
Light (electromagnetic radiation)
3
Light (electromagnetic radiation)
A. Two components
4
Light (electromagnetic radiation)
A. Two components Electrical wave
5
Light (electromagnetic radiation)
A. Two components Electrical wave Magnetic wave
6
Light (electromagnetic radiation)
A. Two components B. Two natures
7
Light (electromagnetic radiation)
A. Two components B. Two natures Particle
8
Light (electromagnetic radiation)
A. Two components B. Two natures Particle Wave
9
Light Characteristics of a Light Wave
10
Light Characteristics of a Light Wave wavelength
11
Light Characteristics of a Light Wave wavelength
The distance between successive wave crests
12
Light Characteristics of a Light Wave wavelength frequency
The time it takes a wave to pass a given point
13
Light Characteristics of a Light Wave wavelength frequency amplitude
The height of a wave
14
Light Characteristics of a Light Wave wavelength frequency amplitude
speed
15
Light Characteristics of a Light Wave The Wave Equation
16
Light Characteristics of a Light Wave The Wave Equation
inverse relation of wavelength and frequency
17
Light Characteristics of a Light Wave The Wave Equation
inverse relation of wavelength and frequency check the units
18
The Wave Equation c = λ x υ
19
Self Check – Ex. 1 A light wave has a frequency of 2.6 x 1014 Hz. What is the wavelength?
20
Self Check – Ex. 2 What is the frequency of light with a wavelength of m?
21
Light Characteristics of a Light Wave The Wave Equation
Planck’s Equation
22
Planck’s Equation E = h x υ h = 6.63 x J·s
23
Self Check – Ex. 3 A light photon has 4.2 x J of energy. What is the frequency of this light?
24
Self Check – Ex. 4 How much energy does a photon of orange light have (λ = 630 nm)? 109 nm = 1 m
25
Light Characteristics of a Light Wave The Wave Equation
Planck’s Equation The Electromagnetic Spectrum
26
Electromagnetic Spectrum
Long waves Short waves
27
Electromagnetic Spectrum
Long waves Short waves Radio waves
28
Electromagnetic Spectrum
Long waves Short waves Radio waves Micro-waves
29
Electromagnetic Spectrum
Long waves Short waves Radio waves Infra-red Micro-waves
30
Electromagnetic Spectrum
Long waves Short waves Radio waves Infra-red Micro-waves Visible
31
Electromagnetic Spectrum
Long waves Short waves Radio waves Infra-red Ultra-violet Micro-waves Visible
32
Electromagnetic Spectrum
Long waves Short waves Radio waves Infra-red Ultra-violet Micro-waves Visible X-rays
33
Electromagnetic Spectrum
Long waves Short waves Radio waves Infra-red Ultra-violet Gamma rays Micro-waves Visible X-rays
34
Emission Spectra
35
Emission Spectra Definition
36
The various types of light given off when an atom is excited
Emission Spectrum: The various types of light given off when an atom is excited
37
Emission Spectra Definition Examples
38
Hydrogen’s Spectrum Note – only a few colors are present 400 nm 500 nm
39
Mercury’s Spectrum 400 nm 500 nm 600 nm 700 nm
40
Neon’s Spectrum 400 nm 500 nm 600 nm 700 nm
41
Emission Spectra Definition Examples Explanation – Bohr’s Model
42
Bohr’s Model of an Atom e-
43
Bohr’s Model of an Atom e-
Electrons orbit the nucleus (like planets orbiting the sun) e-
44
Bohr’s Model of an Atom e-
Electrons must be in a specific orbit (never between orbits) e- n=1 n=2 n=3
45
Bohr’s Model of an Atom e-
Electron wants to be in the lowest unoccupied level e-
46
Bohr’s Model of an Atom e-
The energy of the electrons depends on the distance from the nucleus e- high energy low energy
47
Bohr’s Model of an Atom e-
Light is emitted when electrons fall to lower energy levels e-
48
Bohr’s Model of an Atom Only certain sized falls are permitted. e-
49
Hydrogen’s Spectrum What is the energy for each line produced? Color
410 nm 486 nm 656 nm 434 nm Color Wavelength Frequency Energy Red 6.56x10-7 m Green 4.86x10-7 m Blue 4.34x10-7 m Purple 4.10x10-7 m
50
Hydrogen’s Spectrum What is the energy for each line produced? Color
410 nm 486 nm 656 nm 434 nm Color Wavelength Frequency Energy Red 6.56x10-7 m 4.57x1014 Hz Green 4.86x10-7 m 6.17x1014 Hz Blue 4.34x10-7 m 6.91x1014 Hz Purple 4.10x10-7 m 7.32x1014 Hz
51
Hydrogen’s Spectrum What is the energy for each line produced? Color
410 nm 486 nm 656 nm 434 nm Color Wavelength Frequency Energy Red 6.56x10-7 m 4.57x1014 Hz 3.03x10-19 J Green 4.86x10-7 m 6.17x1014 Hz 4.09x10-19 J Blue 4.34x10-7 m 6.91x1014 Hz 4.58x10-19 J Purple 4.10x10-7 m 7.32x1014 Hz 4.85x10-19 J
52
III. A new model
53
III. A new model A. Quantum Mechanics
Electrons’ location cannot be accurately determined
54
III. A new model A. Quantum Mechanics 1. Orbitals
55
Orbital A region of space around the nucleus where an electron is likely to be found.
56
Types of Orbitals s orbital
57
Types of Orbitals s orbital p orbitals
58
Types of Orbitals s orbital p orbitals d orbitals
59
Types of Orbitals s orbital p orbitals d orbitals f orbitals
60
III. A new model A. Quantum Mechanics Orbitals Sublevels
61
Sub-level A group of orbitals that have the same shape and energy.
62
III. A new model A. Quantum Mechanics Orbitals Sublevels
A few examples
63
III. A new model A. Quantum Mechanics Orbitals Sublevels
A few examples Their electron capacity
64
Sublevels Capacity Each orbital can hold 2 electrons
65
Sublevels Capacity Each orbital can hold 2 electrons
An ‘s’ sublevel is made of ONE orbital, so it holds ___ electrons
66
Sublevels Capacity Each orbital can hold 2 electrons
An ‘s’ sublevel is made of ONE orbital, so it holds _2_ electrons
67
Sublevels Capacity Each orbital can hold 2 electrons
An ‘s’ sublevel is made of ONE orbital, so it holds _2_ electrons A ‘p’ sublevel is made of THREE orbitals, so it holds ___ electrons
68
Sublevels Capacity Each orbital can hold 2 electrons
An ‘s’ sublevel is made of ONE orbital, so it holds _2_ electrons A ‘p’ sublevel is made of THREE orbitals, so it holds _6_ electrons
69
Sublevels Capacity Each orbital can hold 2 electrons
An ‘s’ sublevel is made of ONE orbital, so it holds _2_ electrons A ‘p’ sublevel is made of THREE orbitals, so it holds _6_ electrons A ‘d’ sublevel is made of FIVE orbitals, so it holds ____ electrons
70
Sublevels Capacity Each orbital can hold 2 electrons
An ‘s’ sublevel is made of ONE orbital, so it holds _2_ electrons A ‘p’ sublevel is made of THREE orbitals, so it holds _6_ electrons A ‘d’ sublevel is made of FIVE orbitals, so it holds _10_ electrons
71
Sublevels Capacity Each orbital can hold 2 electrons
An ‘s’ sublevel is made of ONE orbital, so it holds _2_ electrons A ‘p’ sublevel is made of THREE orbitals, so it holds _6_ electrons A ‘d’ sublevel is made of FIVE orbitals, so it holds _10_ electrons An ‘f’ sublevel is made of SEVEN orbitals, so it holds ____ electrons
72
Sublevels Capacity Each orbital can hold 2 electrons
An ‘s’ sublevel is made of ONE orbital, so it holds _2_ electrons A ‘p’ sublevel is made of THREE orbitals, so it holds _6_ electrons A ‘d’ sublevel is made of FIVE orbitals, so it holds _10_ electrons An ‘f’ sublevel is made of SEVEN orbitals, so it holds _14_ electrons
73
III. A new model A. Quantum Mechanics Orbitals Sublevels
A few examples Their electron capacity The ordered list
74
III. A new model B. Arrangement of electrons
75
III. A new model B. Arrangement of electrons Aufbau principle
Electrons fill the lowest energy level first.
76
III. A new model B. Arrangement of electrons Aufbau principle
Pauli Exclusion Principle Two electrons per orbital with opposite spin
77
III. A new model B. Arrangement of electrons Aufbau principle
Pauli Exclusion Principle Hund’s Rule Half fill all orbitals in a sublevel before completely filling them
78
III. A new model B. Arrangement of electrons Aufbau principle
Pauli Exclusion Principle Hund’s Rule A pictorial representation ‘The Aufbau Hotel’
79
IV. Orbital Diagrams A representation of the electrons in an atom
80
IV. Orbital Diagrams Boxes represent . . .
81
IV. Orbital Diagrams Boxes represent . . .
An ‘f’ sublevel should have 7 boxes
82
IV. Orbital Diagrams Boxes represent . . .
An ‘f’ sublevel should have 7 boxes ‘d’ = 5 boxes
83
IV. Orbital Diagrams Boxes represent . . .
An ‘f’ sublevel should have 7 boxes ‘d’ = 5 boxes ‘p’ = 3 boxes
84
IV. Orbital Diagrams Boxes represent . . .
An ‘f’ sublevel should have 7 boxes ‘d’ = 5 boxes ‘p’ = 3 boxes ‘s’ = 1 box
85
IV. Orbital Diagrams Boxes represent . . . Arrows represent . . .
86
IV. Orbital Diagrams Boxes represent . . . Arrows represent . . .
These boxes are filled in a specific order See Aufbau, Pauli Exclusion, and Hund above
87
Self Check – Ex. 5 Write the orbital diagrams for: Fluorine Vanadium
Germanium
88
V. Electron Configuration
A shorthand notation of electron positions in an atom
89
V. Electron Configuration
Number represents energy level
90
V. Electron Configuration
Number represents energy level Letter shows the type of sublevel
91
V. Electron Configuration
Number represents energy level Letter shows the type of sublevel Electrons are counted and written as an exponent
92
V. Electron Configuration
The ordered list
93
V. Electron Configuration
The ordered list 1s22s22p63s23p64s23d104p65s24d105p66s24f145d106p67s25f146d107p6
94
Self Check – Ex. 6 Write the electron configurations for: Magnesium
Sulfur Silver
95
VI. Electron Config. using P.T.
96
VI. Electron Config. using P.T.
The s-block
97
VI. Electron Config. using P.T.
The s-block The p-block
98
VI. Electron Config. using P.T.
The s-block The p-block The d-block
99
VI. Electron Config. using P.T.
The s-block The p-block The d-block The f-block
100
VI. Electron Config. using P.T.
The s-block The p-block The d-block The f-block The order of sublevels (made easy!)
101
Self Check – Ex. 7 Use your P.T. to write electron configurations for:
Potassium Arsenic Rhodium
102
VII. Electron Config. using abbreviations
103
VII. Electron Config. using abbreviations
Abbreviate the previous noble gas in brackets
104
VII. Electron Config. using abbreviations
Abbreviate the previous noble gas in brackets Write configuration of remaining electrons
105
Self Check – Ex. 8 Write the abbreviated electron configurations for:
Iridium Terbium Radon
106
VII. Exceptions to Aufbau
107
VII. Exceptions to Aufbau
Copper 1s22s22p63s23p64s13d9
108
VII. Exceptions to Aufbau
Copper Chromium 1s22s22p63s23p64s13d5
109
VII. Exceptions to Aufbau
Copper Chromium There are others
110
IX. Lewis Dot Diagrams A diagram that uses dots to represent valence electrons
111
IX. Lewis Dot Diagrams Valence electron
112
IX. Lewis Dot Diagrams Valence electron
The outermost electrons (the ones that bond)
113
IX. Lewis Dot Diagrams Valence electron
The outermost electrons (the ones that bond) Determined by adding the highest energy s and p electrons
114
Self Check – Ex. 9 How many valence electrons do the following have?
Nitrogen Arsenic Chlorine
115
IX. Lewis Dot Diagrams Valence electron
We write these for representative elements Representative elements are found in the ‘s’ and ‘p’ blocks
116
Self Check – Ex. 5 Write Lewis structures for: Strontium Iodine
1s22s22p63s23p64s23d104p65s24d105p3
117
The End
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.