Presentation is loading. Please wait.

Presentation is loading. Please wait.

Challenges in new drug discovery in South Asia

Similar presentations


Presentation on theme: "Challenges in new drug discovery in South Asia"— Presentation transcript:

1 Challenges in new drug discovery in South Asia
Ram Vishwakarma Indian Institute of Integrative Medicine (Council of Scientific & Industrial Research) Jammu and Srinagar, India Dept. Natural Products, Dept. Natural Products,

2 Drug Discovery and Development (Current Business Model)
New drugs: Small organic molecules and therapeutic proteins (biologics) Big Pharma and Biotech companies (US, Europe, Japan) Generic drugs: API formulation of off-patent drugs for domestic/world market Indian and Chinese companies Contract research, API manufacturing and Clinical trials services

3 Time tested model for new drug discovery
Natural products (plants and microbial species) and traditional system of medicine and ethno-biology (Opiates, statins, antibiotics, rapamycin, ephedrine, quinine, artemisinin, amphotericin, vincritine, taxol, podophyllotoxin (almost all anticancer and anti-infective drugs are natural products derived) Medicinal chemistry of know bioactive compounds (drugs) to decipher structure-activity relationship (SAR) and discovery of new pharmacological activity A single chemical motif gave rise to antibiotics, hypoglycemic agents, diuretics, and antihypertensive drugs

4 Mechanism based drug design and discovery
Random screening of compound libraries by HTS against clinically validated targets (enzymes, receptors etc) relevant to the disease Hits – lead – drug candidate (medicinal chemistry) Mechanism based drug design and discovery (antimetabolites, methotrexate, trimethoprim, antidepressants, steroids like contraceptives and anti-inflammatory drugs) Structure based drug design (X-ray crystallography, NMR spectroscopy, molecular modeling) (Imatinib) Observational pharmacology (off-target optimization) Sidnafil citrate (Viagra), Cialis and other PDE5 blocker)

5 Most Successful Biological Targets

6 Drug discovery & development process
Lead Discovery Pre- clinical Regulatory approval Market i ng Phase I IND II III NDA Target Id 14 Years 6 4 2 12 10 8 Key Milestone

7 Expertise required in the area of drug discovery & development
Medicinal Chemistry Structural Biology Natural Product Chemistry New Drug Cheminformatics Regulation ADME-PK Intellectual Property Formulation Safety Pharmacology/ Toxicology

8 Uniqueness of drug discovery
Most regulated industry FDA and country-specific multiple agencies Risk of post-approval failure (Vioxx and Glitazones) Balance between profits and public-health Patent expiry and generic competition (India) Goal-posts keep changing Current state of knowledge in Science & Technology Biological targets and approaches change significantly and R&D has to rapidly change (stem cells, RNAi, antibodies) Entirely new opportunities are created by new Science

9 Key discovery “ecosystem” issues !
Drug discovery is a team work (chemistry, pharmacology, clinical sciences) with moments of brilliant thinking and months of painstakingly detailed work Spotting, inspiring, nurturing and retaining leaders who are also accomplished scientists Segregation of “first-in-class” and “best-in-class’ drug discovery teams (cultural issues) with appropriate goals and reward system Outsourcing non-essential functions to remain focused on key core objectives and expertise Partnership with innovator pharma companies in clinical development phases Identify areas of strategic and future interests and initiate collaboration with leading academic groups (new ideas) Answers to public health problems are “drugs” not “publications”

10 Our efforts in new drug discovery
Targets: clinically validated kinases Dept. Natural Products, Dept. Natural Products,

11 Phosphatidylinositol 3-kinase (PI3K) pathway
Inhibition of PI-3K kinase (isoform specific inhibitors) PI3Ka for cancer and PI3Kg for inflammation Up-regulation of PTEN phosphatase Inhibition of AKT isoforms Inhibition of mTOR

12 Central role of PI3K pathway in cell

13 Regulation of PI3K activity by phosphatases
(PTEN and SHIP) Dept. Natural Products, Dept. Natural Products,

14 Both the RTK and GPCR pathways are involved in PI3K activation

15 PI3K signaling: the big picture

16 Discovery of Preclinical candidates using target based discovery
In house validation of PI3K isoforms (a,b,g,d) assay

17 Target-Product Profile of PI3K for discovery of preclinical candidate
Criteria/Parameters Ideal Anticancer PI3K drug candidate (NVPBEZ-235 Clinical trial Phase II)) Proposed candidate (IIIM) Enzyme Potency (IC50) PI3K/m-TOR/Dual Inhibitor (IC50<1nM ; all isoforms) <25nM Isoform Selectivity Pan-PI3K PI3K-α 0.004; β ; ү ; δ 0.005 10 fold against other isoforms Kinase selectivity Not known 20-30 fold against other isoforms Cell based Assay (IC50) μM (HCT116, DLD-1 and SW480 cells) 0.1-10μM Solubility <1mg/ml in water ≥ 0.05mg/ml @pH 4 and 7.8; In vitro ADME NA; Proposed Candidate: All Cyp’s ≥ 10uM Stable in HLM, MLM Permeability: High No HERG liability at 10uM No Cyp 10uM In vivo PK Bioavailability ≥ 30%, Half life ≥ 3hrs (mice, rat & dog) In vivo Murine tumor models 40–50 mg/kg body weight-treats effectively without side effects Murine model-tumor regression Safety No cardiac/Hepatotoxicity IP NCE’s Patentable NCE’s MW <500 <500 (<500 )

18 Medicinal chemistry of Liphagane scaffold
(Isoform selective PI3K inhibitors) A meroterpenoid isolated from marine sponge Aka coralliphaga Inhibitory activity against PI3Kα (10 fold selectivity) More selective than the synthetic LY and Wortmanin. IC50: 100 nM Cell based data: LoVo (human colon) 0.58 µM CaCo (human colon), µM MDA-468 (human breast) µM K. A. Arvinda Dept. Natural Products, Dept. Natural Products,

19 Synthesis of Liphagal Dept. Natural Products, 22.01.2007

20 NCEs based on Liphagal scaffold (first series)

21 Medicinal chemistry of Liphagane scaffold
S. No. Code % inhibition of Pi3K α at 0.5 μM 1 IIIM-264 (Standard) 88.9 2 IIIM-265 88.2 3 IIIM-112 15.1 4 IIIM-114 10.6 5 IIIM-109 2.4 6 IIIM-106 11.1 7 IIIM-113 7.1 8 IIIM-108 5.4 9 IIIM-115 10 IIIM-111 11 IIIM-110 12 IIIM-107 S. No. Code % inhibition of Pi3K α at 0.5 μM 13 IIIM-98 10.4 14 IIIM-100 7.7 15 IIIM-105 2.6 16 IIIM-102 17 IIIM-101 18 IIIM-104 10.5 19 IIIM-97 20 IIIM-99 21 IIIM-116 8.2 Sample % 0.5 μM SD IIIM-345 11.1 IIIM-346 11.8

22 IC50 of two best IIIM compounds from Liphagal scaffold
Events or Targets Sample code SIP-1003 SIP1004 Enzyme based IC50 PI3Kα- 140 nM β nM γ ND  ND PI3Kα- 102 nM β µM γ mM  mM Cell based IC50 Caco-2 =10.0µM HCT-116 =8.12µM Caco-2 =7.6µM HCT-116 =5.2µM Annexin-V 35-57% (1-9 µM) 50-58% Cell Cycle 50-60% G1 arrest 64-70% G1 arrest Wound Healing Effective Highly effective Phospho-Akt 50-55% Down-regulation 60-68% Downregulation

23 Medicinal chemistry of Liphagane (Six-membered ring) scaffold
Isoform selective: PI3K-α IC50: 66nM Six-membered analog : PI3K-α IC50: nM K. A. Aravinda

24 Molecular Docking on 3D crystal structure of Pi3K-α
Analysis of the Kinase Domain of Pi3K-α 852 Hinge region N-Lobe C-Lobe Activation Loop N KINASE DOMAIN C 697 851 1068 Kinase domain: N lobe: Residues * C lobe: Residues * Activation Loop: Source: Science (2007) 318:

25 Interaction of liphagal on Pi3K-α
- Molecular Docking studies on 3D crystal structure of Pi3K-α - Liphagal

26 4-amino quinazolines as PI3K-α inhibitors
PI3K & mTOR activity p110α 4 nM p110β 76 nM p110δ 5 nM p110γ 7 nM mTOR 21 nM 25 analogs synthesized All screened for cytotoxicity against 5 cell lines All screened for PI3K-a inhibition Isoform-selectivity determined for selected analogs Mol. Cancer. Ther. 2009, 8, New series: Patent filed Rammohan

27 Medicinal chemistry of 4-amino quinazolines as PI3K-α inhibitors
S.No Code % inhibition of PI3K α at 0.5 µM IC 50 against PI3K isoforms (µM) α β γ δ 1 NVP-BEZ235 97.1 0.004 0.076 0.007 0.005 2 IIIM-MCD-300 69.9 0.115 0.67 1.84 0.27 3 IIIM-MCD-287 48.8 0.150 na 8.44 0.88 4 IIIM-MCD-288 48.6 5 IIIM-MCD-307 47.5 6 IIIM-MCD-286 45.6 7 IIIM-MCD-298 44 8 IIIM-MCD-301 38.1 9 IIIM-MCD-305 36.8 10 IIIM-MCD-303 36.4 11 IIIM-MCD-308 33 12 IIIM-MCD-290 29.8 S. No. Code % inhibition of PI3K α at 0.5 µM 13 IIIM-MCD-296 20.3 14 IIIM-MCD-294 17 15 IIIM-MCD-306 16.4 16 IIIM-MCD-304 11 IIIM-MCD-299 8.2 18 IIIM-MCD-302 4.1 19 IIIM-MCD-291 2.7 20 IIIM-MCD-292 1.5 21 IIIM-MCD-297 1.3 22 IIIM-MCD-289 23 IIIM-MCD-295 24 IIIM-MCD-293 25 IIIM-MCD-285 Rammohan

28 IND in clinical trials from this scaffold
One IND filed and Phase I/II is under progress in India (Piramal) S. Kumar, R. Vishwakarma, R. Mundada, V. Deore, P. Kumar, S. Sharma (Piramal Life Sciences Ltd, Mumbai), Preparation of imidazo[4,5-c]-quinoline derivatives and their use in the treatment of tumors and/or inflammation, PCT Int. Appl. (2011) WO

29 Discovery of natural products CDK inhibitors
Criteria/Parameters Ideal: anticancer molecule (pre-clinical candidate) Enzyme Potency (IC50) CDK inhibitor (IC50<100nM) 100 nM (CDK2–CYCA and CDK2–CYCE), Proposed candidate: <25nM Selectivity ~100 fold more over other kinases (Lipid kinases, VEGFR, IGFR, etc) Cell based Assay (IC50) ~ nM; Proposed Candidate 5-10 nM Solubility ≥ 2 4 and 7.8, Storage at (2-8 oC); Proposed Candidate ≥ mg/ml; Storage at room temperature In vitro ADME All Cyp’s ≥ 10µM Stable in HLM, MLM Permeability: High No HERG liability at 10µM In vivo PK Oral bioavailability ≥ 20%, Half life ≥ 2.5-3hrs (rat/mice) Proposed Candidate: Oral bioavailability >40% and Half life >5-6hrs. In vivo Mouse xenograft model-tumor regression Safety No cardiac/Hepatotoxicity IP Patentable Initial SAR Established MW Less than 500 In Silico Predicted Tox NIL Cytotoxicity 10 fold TPP as CDK inhibitor Rohitukine Isolated from Indian medicinal plant Dysoxylum binectariferum Hook Flavopiridol Sanofi-FDA approved orphan drug for CLL P276-00 Nicholas Piramal Phase II Shreyans

30 Medicinal chemistry of Rohitukine scaffold
Contd.. Rohitukine is a flavone alkaloid isolated from plant Dysoxylum binectariferum (Meliaceae) This flavone led to discovery of two clinical candidates – Flavopiridol and P These flavones are potent inhibitors of CDKs – 1,2,4 and 9 Series of NCEs have been synthesized by functionalization at these three positions This scaffold has shown promising activity against several kinases implicated in pathogenesis of cancer/ Alzheimers disease/ diabetes Patent filed Shreyans

31 Medicinal chemistry of Rohitukine scaffold

32 Medicinal chemistry of Rohitukine scaffold
Contd.. S.No Code % Inhibition at 0.5 μM CDK-2/A CDK-9/T1 1 5d (IIIMNPC-290) 89.9 (IC50 =0.015 μM) 92.3 (IC50 = μM) 2 5g 43 83.3 3 5e 42 91.5 4 5h 21 60 5 5c 7 51 6 5a 5.2 66.5 5b 0.6 70.1 8 5f 33 S.No. Code % Inhibition at 0.5 μM CDK-2/A CDK-9/T1 1 IIIMNPC-39 14 2 IIIMNPC-40 30 3 IIIMNPC-50 12 4 IIIMNPC-33 10 5 IIIMNPC-34 6 IIIMNPC-11 7 IIIMNPC-10 8 IIIMNPC-36 9 IIIMNPC-38 IIIMNPC-35 11 IIIMNPC-37 Shreyans

33 Medicinal chemistry of Rohitukine scaffold
Contd.. S.No. Code % Inhibition at 0.5 μM CDK-2/A CDK-9/T1 1 IIIMNPC-196 16.6 2 IIIMNPC-195 10 8 3 IIIMNPC-192 4 IIIMNPC-183 9.6 5.4 5 IIIMNPC-184 7.0 4.7 6 IIIMNPC-193 4.5 7 IIIMNPC-187 3.8 IIIMNPC-201 3.5 9 IIIMNPC-185 Entry IC50, µM IC50, nM HL-60 PC-3 MiaPaca2 MCF-7 A431 Caco-2 CDK-2/A CDK-9/T1 NPC287 1 58 1.8 31 4.4 3.7 N.D. 66.76 NPC288 3 30 0.8 8 608 11.53 NPC289 1.6 49 39 5.6 310 NPC290 0.9 41 0.6 4 7 15.58 1.92 NPC291 >100 4.7 4.3 nt 466 29.62 NPC292 0.4 10 2.4 6 17 1800 350 Shreyans

34 Docking of Flavopiridol (pan CDK inhibitor) on crystal structure
of CDK2 (2DUV) - FBDD for designing CDK2 inhibitors - Source : Bioorg.Med.Chem.Lett. (2007) 17 p.1284

35 Modeling on Flavopiridol structure for lead optimisation
- FBDD for designing CDK2 inhibitors - Superimposed docked conformation on the cluster information of the binding site of CDK2 C1 C2 C5 The site for modifications identified through the FTMap analysis of the binding site matches with the SAR carried out on the flavopiridol structure C2 C1 Molecular Weight range of the fragment library used: C5 List of 132 structures designed using this approach

36 Mechanistic studies of two optimized hits:
IIIM-NPC-288 and IIIM-NPC-290 NPC-288, µM NPC-290, µM Western blots from MiaPaca-2 cells Caspase-8 c-MYC CDK-1 PARP Cleaved PARP γH2AX β actin VEGF-R2 NPC-290, µM β- actin Western blots from HL-60 cells Control NPC290-3 µM NPC µM Apop G1 S G2 1% 43% 56% Apop G1 S G2 98% 53% 43% 4% Apop G1 S G2 98% 57% 40% 3%

37 Preclinical data of IIIM-NPC-290
Sr.No. Parameter IIIM-NPC-290 1 Mol. wt. 461 2 Solubility PBS = 5 µM SGF = 26 µM SIF = 141 µM 3 In-vitro cytotoxicity IC50 (µM) HL-60 = 0.9 µM PC-3 = 41 µM A431 = 8 µM MIAPaCa = 0.6 µM MCF-7 = 4 µM Caco-2 = 7 µM 4 Target IC50 (nM) CDK9/T1 = 1.92 nM CDK2/ A = 15.5 nM 5 Protein binding Fraction unbound = 0.044 % Bound = 4.43 6 CYP liability (% inhibition at 10 uM) CYP3A4 = 38.3 CYP2D6 = 16.3 CYP2C9 = 53.6 CYP1A2 = 18.5 CYP2C19 = 70.9 7 Caco-2 permeability A to B: 2.1; B to A: 3.9; Efflux ratio: 1.8 9 Log P 2.9 10 PKa 5.4

38 Medicinal chemistry of Meriolins
Co-crystal structure of CDK-2 with Meriolin Sites for modification Nanomolar CDK potency PK 30 mg/Kg No plasma level observed Acceptable Log P Lower Log P Orally not available Contd.- Umed Singh

39 Medicinal chemistry of Meriolins
Sr.No. Code CDK2 %activity CDK9 %activity IC50 CDK2 IC50CDK9 1 IIIM-290 31.3 68.8 0.23 0.64 2 IIIM-291 43.5 65.8 3 IIIM-292 16.6 48.7 0.16 0.45 4 IIIM-293 10.6 13.1 0.01 0.02 5 IIIM-363 37.7 83.8 6 IIIM-364 58.9 78.4 7 IIIM-365 47.6 42.4 8 IIIM-366 16.8 50.3 0.0105 0.0525 9 IIIM-367 10.9 71.7 0.004 0.0385 10 IIIM-368 10.8 17.7 0.0055 0.024 11 IIIM-369 97.7 111.3 12 IIIM-370 15.8 29.1 0.0225 0.059 13 IIIM-384 16.9 12.9 14 IIIM-294 11.6 5.9 Synthesis of analogs as per approach 3 Patent filing under process Confidential Umed Singh

40 Medicinal chemistry of Meriolins: Preclinical Candidates
Parameters Meriolin 1 IIIM-293 IIIM-368 In vitro enzyme and cell based activity( nm) Kinase activity CDK2: IC50 = 250 nM CDK9 : IC50 = 150 nM CDK2: IC50 = 10 nM CDK9 IC50 = 20 nM CDK2: IC50 = 6 nM CDK9 : IC50 = 24 nM Cell line activity HCT = 1.2 PC = 1.5 PANC1 = 1.0 KMS-11 =1.1 A = 0.4 MCF = 1.56 THP = 0.99 HCT-116 = 0.56 PC = 2.7 Hep = 2.67 (Growth inhibition at 10 µM) T47D = 73 A549 = 93 PC-3 = 86 NCI-H322 = 95 IC50 is in progress Solubility (µg/ml) Water PBS SGF SIF In progress < 5 >1500 cLogP 0.85 2.10 PK properties

41 Molecular docking studies of Meriolin analogs on CDK2 contd.
- FBDD for designing CDK2 inhibitors - Identification of modification sites

42 Molecular docking studies of Meriolin analogs on CDK2 contd.
- FBDD for designing CDK2 inhibitors - Creation of virtual library XP Gscore: MMGBSA DG Bind: QP logo/w: 0.535 Hbdonor: 3 Hbacceptor: 7.5 XP Gscore: MMGBSA DG Bind: QP logo/w: 1.898 Hbacceptor: 6.5 XP Gscore: MMGBSA DG Bind: QP logo/w: 1.484 Hbdonor: 4 Hbacceptor: 6 XP Gscore: MMGBSA DG Bind: QP logo/w: 3.496 Hbacceptor: 3.5 XP Gscore: MMGBSA DG Bind: QP logo/w:1.124 Hbdonor: 3 Hbacceptor: 6.5 XP Gscore: MMGBSA DG Bind: QP logo/w: 1.53 Hbdonor: 4 Hbacceptor: 5 XP Gscore: MMGBSA DG Bind: QP logo/w: 1.77 Hbacceptor: 5.2 XP Gscore: MMGBSA DG Bind: QP logo/w: 2.438

43 NCEs in preclinical development
Hits identified (4 for PI3K and 3 for CDK) taken forward for lead optimization and preclinical development Ongoing studies Optimization of lead PK profile, in vivo animal studies Cyp liabilities, Pre-formulation studies Kinase profiling

44 Kinase Inhibitors of Marine Origin
Chem. Rev. 2013, 113, 6761−6815

45 Our Patents ( ) R. A. Vishwakarma, S. D. Sawant, P. P. Singh, A.H. Dar, P. R. Sharma, A. K. Saxena, A. Nargotra, A. A. K. Kollaru, R. Mudududdla, A. K. Qazi et.al. Bororic acid bearing liphagane compounds as inhibitors of PI3Ka and/or b PCT Int. Appl. (2012) WO 2013/ A1 R. A. Vishwakarma, S. D. Sawant, P. P. Singh, A. H. Dar, A. Nargotra, P. R. Sharma, D. M. Mondhe; Isoform selective C-ring substituted purinyl, tetrazolyl, isatinyl-quinazolinone analogs as anticancer agents and inhibitors of PI3K-a/b; PCT Application: 150NF/2012 S. K. Jain, T. Sidiq, S. Meena, A. Khajuria, R. A. Vishwakarma, S. Bharate BibishanTetrahydro-2H-Pyrano [3,2-C] Isochromene-6-Ones for the treatment of inflammatory Disorders; PCT Appl. Filed, 1565DEL2013 D. M. Mondhe, S.C. Taneja, S.Koul, J.K. Dhar, A.K. Saxena, R.K. Johri, Z.A. Wani, S.A. Andotra, S.C. Sharma, S. Singh, P. N. Gupta, R.A. Vishwakarma; A novel formulation useful in Cancer chemotherapy; PCT Appl. Filed. 2554/DEL/2012 R. A. Vishwakarma, S. B. Bharate, S. Bhushan, S. K. Jain, S. Meena, S. K Guru, A. S. Pathania, S. Kumar; Cyclin-Dependent Kinase Inhibition by 5,7-Dihydroxy-8-(3-Hydroxy-1-MethylPiperidin-4-Yl)-2-Methyl-4H-Chromen-4-One Analogs; PCT Appl. Filed 1142DEL2013 P. P. Singh, R. A. Vishwakarma; 6-Nitro-2,3-Dihydroimidazo [2,1-b] oxazoles for the treatment of M. tuberculosis and a process for the preparation thereof ; PCT Appl. Filed 0225NF2012 R. A. Vishwakarma, S. B. Bharate, S. Bhushan, S. K. Jain, S. Meena, A. Khajuria, S. K. Bhola et. al. New Chromone alkaloid dysoline for the treatment of cancer and inflammatory disorders.; PCT Appl. Filed 1077DEL2013 Deepika Singh, Jai Parkash Sharma, Sundeep Jaglan, Abid Hamid Dar, Varun Partap Singh, Ram A. Vishwakarma; Brachiatins: Novel anticancer agents from an endophytic fungus Trichoderma longibrachiatum, process for their production and use thereof; PCT Appl. Filed 2563DEL2013 S. D. Sawant, G. Lakshma Reddy, M. Srinivas, S. S. Hussain, D M Ishaq, A. Nargotra, P. Mahajan, R. A. Vishwakarma; Novel Pyrazolopyrimidies for treatment of impotence and process for the preparation thereof; PCT Appl. Filed 0106NF2013 R. A. Vishwakarma, S. B. Bharate, S. Bhushan, RR Yadav, S. K. Guru, P. Joshi, 6-Aryl-3-phenylamino-quinazoline analogs as phosphoinositide- 3-kinase inhibitors; PCT Appl. Filed 0117/NF/2013 Patent filed on 23-May-2013 S. Balachandran, C. J. Dinsmore, A. Roychowdhury, R. Sharma, R. A. Vishwakarma. Preparation of morpholinosulfonyl indole compounds as modulators of insulin-like growth factor I receptors and insulin receptors for treating cancer, PCT Int. Appl. (2012), WO A1

46 Byproducts of discovery projects: Publications (2012-13)
V. Venkateswarlu, KA Arvinda Kumar, S. Balgotra, G. L. Reddy, M. Srinivas, R. A. Vishwakarma, S.D. Sawant, Chemistry, Eur. J., 20, 1-6, (2014) N. Mupparapu, S. Khan, S. Battula, M. Kushwaha, A. P. Gupta, Q. N. Ahmed, R. A. Vishwakarma, Organic Letters, 16, (2014) P. Kannaboina, K. Anilkumar, S. Aravinda, R. A. Vishwakarma, P. Das, Organic Letters, 15, (2013) S. B. Bharate, S. D. Sawant, P. P. Singh and R. A. Vishwakarma, Chemical Reviews, 113, (2013). Singh, P.P.; Aithagani, S.K.; Yadav, M.; Singh, V.P.; Vishwakarma, R.A.. J. Org. Chem., 2013, 78, 2639–2648 R. Mudududdla, S. K. Jain, J. B. Bharate, A. P. Gupta, B. Singh, R. A. Vishwakarma, S. B. Bharate, J. Org. Chem. 77, (2012) P. P. Singh, T. Thatikonda, K. A. Kumar, Aravinda; S. D. Sawant, B. Singh, A. K. Sharma, P. R. Sharma, D. Singh, R. A. Vishwakarma, J. Org. Chem., 77, (2012) S. B. Bharate, R. Mudududdla, J. B. Bharate, N. Battini, S. Battula, R. R.Yadav, B.Singh, R. A. Vishwakarma, Org. Biomol. Chem. 10, (2012) P. P. Singh, S. Gudup, H. Ayuri, S. Ambala, M. Yadav, S. D. Sawant and R. A. Vishwakarma, Org. Biomol. Chem., 10, (2012) P. P. Singh, S. Gudup, S. Ambala, U. Singh, S. Dadhwal, B. Singh, S. D. Sawant and R. A. Vishwakarma, Chem. Commun., 47, (2011) S. Manda, B, Singh, S. B. Bharate, R. A. Vishwakarma, Med. Chem. Commun., 3, (2012) Bharate, S.B.; Yadav, R.R.; Khan, S. I.; Tekwani, B. L.; Jacob, M. R.; Khan, I.A.;. Med. Chem. Commun , 4,

47 Publications ( ) S. B. Bharate, A. K. Padala, B. A. Dar, R. R. Yadav, B. Singh and R. A. Vishwakarma, Tetrahedron Lett., 54, (2013) S. B. Bharate, R. Mudududdla, R. Sharma and R. A. Vishwakarma, Tetrahedron Lett., 54, (2013) S. K. Jain, S. Meenaa,b, A. K. Qazi, A. Hussain, S. K. Bhola, R. Kshirsagar, K. Pari, A. Khajuria, A. Hamid, R. Uma Shaanker, S. B. Bharate and R. A. Vishwakarma, Tetrahedron Lett., In Press 2013 B. Singh, R. Parshad, R.K. Khajuria, S. K. Guru, A. S. Pathania, R. Sharma, R. Chib, S. Aravinda, V. K. Gupta, I. A. Khan, S. Bhushan, Sandip B. Bharate, R. A. Vishwakarma, Tetrahedron Lett. In Press: 2013 S. D. Sawant, M. Srinivas, K. A. Aravinda Kumar, G. Lakshma Reddy, P. P. Singh, B. Singh, A. K. Sharma, P. R. Sharma and R. A. Vishwakarma, Tetrahedron Lett., 54, (2013) R. M. Yadav, R. A. Vishwakarma and S. B. Bharate, Tetrahedron Lett, 53, (2012) S. D. Sawant, M. Srinivas, G. Lakshma Reddy, P. P. Singh, R. A. Vishwakarma, Tetrahedron Lett., 53, (2012) R. R. Yadav, N. Battini, R. Mudududdla, J. B. Bharate, N. Muparappu, S. B. Bharate and R. A. Vishwakarma, Tetrahedron Lett., 53, (2012) S. Mohammed, A. K. Padala, B. A. Dar, B. Singh, B. Sreedhar, R. A. Vishwakarma and S. B. Bharate, Tetrahedron 68, (2012) S. K. Jain, A. S. Pathania, S. Meena, R. Sharma, A. Sharma, B. Singh, B. D. Gupta, S. Bhushan, S. B. Bharate, and R. A. Vishwakarma, J. Nat. Prod. In Press, 2013:DOI: /np400433g M. K. Zilla, M. Qadri, A. S. Pathania, G. A. Strobel, Y. Nalli, S. Kumar, S. K. Guru, S. Bhushan, S. K. Singh, R. A. Vishwakarma et al; Phytochemistry, In Press, 2013; DOI: /j.phytochem M. Sen, B. Shah, S. Rakshit, V. Singh, B. Padmanabhan, M. Pomusamy, K. Pari, R. A. Vishwakarma, D. Nandi and P. P. Sadhale, PloS Pathogens, 7, e (2011)

48 Acknowledgements Parvinder Pal Singh S.D. Sawant Sandip B. Bharate
Parthasarathi Das Naveed Qazi Ajay Kumar S.C. Sharma Shashi Bhushan Amit Nargotra K.A. Aravind Kumar M. Srinivas M. Ramesh V. Venkateshwaralu Rammohan R. Yadav T. Thanusha Umed Singh Prashant Joshi D. Saidulu M. Nagaraju Sudhakar Manda Mohammed Shabbir Shreyans K. Jain Baljinder Singh Abubakar Wani Collaborators: Jubilant Biosys, Bangalore Vimta Labs, Hyderabad International Center for Kinase Profiling (ICKP), University of Dundee, UK Dr. Raj Hirwani and Team, URDIP, Pune (for patentability search)


Download ppt "Challenges in new drug discovery in South Asia"

Similar presentations


Ads by Google