Download presentation
Presentation is loading. Please wait.
Published byTate Earney Modified over 10 years ago
1
Geodetic Monitoring Solutions in Mining Industry ASIA GEOSPATIAL FORUM 2011 Pasawat Tipyotha Application Engineer
2
Trimble Monitoring Solutions Information Trend + Time Common request in all monitoring applications
3
Trimble Monitoring Solutions Different jobs require different sensors Optical Total Stations –High accuracy positioning –Can observe multiple points –Relatively short distances <2,5km GNSS Sensors – Large distances – High data rate – Precise differential positioning – Limited to one point
4
New Instrument and Technology Trimble S8 with FineLock™ Angle accuracy: 0.5” or 1” Distance accuracy: 0.8 mm + 1 ppm FineLock accuracy: <1 mm at 300 m Available as Autolock and Robotic MagDrive™ SurePoint™ Optional Long Range FineLock™ →Accuracy: <10 mm at 2,500 m
5
Trimble S8 Total Station FineLock™ Works with 333 Hz One measurement takes two seconds Averages 670 aimings per measurement Manual Aiming!FineLock Aiming in „Slow Motion“!
6
Narrow field of view No interference with surrounding prisms Minimum separation Δ: 80 cm at 200 m Δ Trimble S8 Total Station FineLock™
8
Optical total stations GNSS receivers Applications for GNSS and optical sensors Trimble 4D Control
10
Optical total stations GNSS receivers Optical total stations combined with GNSS receivers Applications for GNSS and optical sensors Trimble 4D Control
12
Designed for Mining Displacement based on slope distance measurements
13
Overview Motivation for introducing the separated Slope Distance Measurements. Implementation in T4D (Monitor Properties, Slope Distance Chart View, Alarming, Report)
14
Motivation Due the atmospheric circumstances we are not able permanently to lock the target prism. Instead of losing information of the point in the current round it would be useful to get at least one usable measurement component from the running round the slope distance. We are interested into point movements in the instrument direction (some users need exactly this feature) This kind of displacement should be estimated by comparing the measurements (ReferenceSlopeDistance - CurrentSlopeDistance) but not estimated via the derived coordinates.
15
Motivation The monitoring direction is defined with one measurement component only (instrument target). no correlation with vertical and horizontal angles. The uncertainty of measurements is dependent only of Slope Distance Measurements and ppm-Modeling. in case of “target not locked” state we assume that the target point is still near the expected position. So the inaccuracy in the slope distance is much less than e.g. vertical angle. The adjustment calculation have not effect on the delta values of slope distance measurements.
16
Motivation Bad atmospheric circumstances do not allow the instrument to lock the prism. To get at least one valuable measurement component we try to measure the slope distance and keep that as significant value for future analysis. Create difference to the reference slope distance.
17
Implementation in T4D – UI Data Collector/Data Receiver view
18
Implementation in T4D – UI 2D Map
19
Implementation in T4D – UI Displacement Chart View
20
Implementation in T4D – UI Slope Distance Chart View
21
(Deformation) Monitor Properties Defines thresholds for slope distances Edit 0.5
22
Slope distance Thresholds of a point in the group DAM_SOUTH
23
Alarming Create appropriate thresholds via Alarm Manager If threshold is exceeded we get appropriate alarm message
24
Slope Distance Displacement - Report
26
Zurich Central Station, Switzerland New rail track New train station New tunnel Real-time optical monitoring! Examples from the real world
27
Phalaborwa Copper Mine, South Africa Examples from the real world
28
Tolt Dam, U.S.A. Examples from the real world
29
Deep Foundation in Monte Carlo, Monaco Examples from the real world
30
El Romeral Iron Mine, Chile Examples from the real world
31
Example from Real Project in Details Maemoh Mine, Thailand
32
Background Information Mae Moh mine is the largest Lignite coal mine in Thailand Located in Mae Moh district. Distance from Bangkok to the north is about 630 kilometers
33
More information The Maemoh mine serves the Maemoh Power Plant from EGAT. This power plant supplies power to the northern region of Thailand. The mine has been operating for 50 years already. With the more recent expansion the need existed to install a new, additional monitoring system. Within the mine many people are working and many, expensive machinery is deployed. To reduce the risk to both staff and equipment this new monitoring system was needed. Due to the dimension of the mine a long range monitoring solution was needed. The Trimble S8 proved a perfect solution for this.
34
Mining Plan East NE (North-East) SB (Sub Basin) BT (Buttress) SE (South-East) West NW (North-West) SW (South-West) Central C1 (Central 1) C2 (Central 2) C3 (Central 3)
35
The Depth of Each Pit
36
Problems with the old system Using 6 radios including repeaters for transmit the data to control center –Lightening problem –Stability problem Keeping Database PCs at site –Risk for robbery –Checking data on site at daily basis –Not flexible
37
Requirements for the new system Sending data including temperature directly from instrument to the control center No PCs or laptop kept with the instrument Able to control the instrument remotely Monitored points length are up to 2.5 kilometers Up to 50 points need to be monitored in the pit
38
New System Diagram
39
Control points
40
Monitored Area
41
Monitoring Hut
42
Control Center
43
Conclusions Modular setup allows the instruments to be controlled remotely from a control center. The Trimble S8 is monitoring approximately 50 points. Trimble’s MagDrive solution helps to improve the speed of measuring all of these compared to conventional servo systems. Long Range Finelock for long range measurement reduced the need to install multiple monitoring stations across the mine. Use of a wireless LAN system eliminates the problems they experienced with high power radios that required repeaters across the site.
44
Thank You!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.