Download presentation
Presentation is loading. Please wait.
Published byShayne Costin Modified over 9 years ago
1
Christophe Genolini Bernard Desgraupes Bruno Falissard
8
Parametric algorithms Non parametric algorithms
9
Parametric algorithms Example : proc traj Base on likelihood Non parametric algorithms K means (KmL)
10
I ♥ Quebec…
11
Size = 1,84 Small likelihood Big likelihood
13
Number of clusters Trajectories shape (linear, polynomial,…) Distributions of variable (poisson, normal…) Maximization of the likelihood
14
Number of clusters Maximization of some criteria
17
∆+ 3.44.2 1.72.3 0.651.2 3.12.3 3.93.2
18
∆+ 1.66.8 0.365.1 1.34 4.90.6 5.70.6
20
> kml(cld3,4,1,print.traj=TRUE)
25
longData <- as.cld(gald()) kml(longData,2:5,10,print.traj=TRUE) choice(longData)
29
C1: partition for V1 C2: partition for V2 C1xC2: partition for joint trajectories? C1 = {small,medium,big} C2 = {blue,red} C1xC2 = {small blue, small red, medium blue, medium red, big blue, big red}
38
par(mfrow=c(1,2)) a <- c(1,2,1,3,2,3,3,4,5,3,5) b <- c(6,6,6,5,6,6,5,5,4,3,3) plot(a,type="l",ylim=c(0,10),xlab="First variable",ylab="") plot(b,type="l",ylim=c(0,10),xlab="Second variable",ylab="") points3d(1:11,a,b) axes3d(c("x", "y", "z")) title3d(,, "Time","First variable","Second variable") box3d() aspect3d(c(2, 1, 1)) rgl.viewpoint(0, -90, zoom = 1.2)
39
cl <- gald(functionClusters=list(function(t){c(-4,-4)},function(t){c(5,0)},function(t){c(0,5)}),functionNoise = function(t){c(rnorm(1,0,2),rnorm(1,0,2))}) plot3d(cl) kml(cl,3,1,paramKml=parKml(startingCond="randomAll")) plot3d(cl,paramTraj=parTraj(col="clusters"))
41
The nominees are: Calinsky & Harabatz Ray & Turie Davies & Bouldin ... The winner is…
42
The nominees are: Calinsky & Harabatz Ray & Turie Davies & Bouldin ... The winner is… Falissard & Genolini (or G & F ?)
44
« classic » distance « shape » distance
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.