Download presentation
Presentation is loading. Please wait.
Published byStephen Weedman Modified over 9 years ago
1
Biological fluid mechanics at the micro‐ and nanoscale Lectures 3: Fluid flows and capillary forces Anne Tanguy University of Lyon (France)
2
Some reminder I.Simple flows II.Flow around an obstacle III.Capillary forces IV.Hydrodynamical instabilities Lecture 3
3
II. Flow around an obstacle
4
The case of « Potential flows »
5
« Potential flow » around a fixed cylinder: Stream lines Pressure Boundary conditions: Potential : Velocity v: Uniform flow + dipole U
6
« Potential flow » around a rotating cylinder: the Magnus force. Boundary conditions: Potential : Velocity v: Fixed cylinder + vortex Asymetric flow: arrest points If | |<4 R|U|sin = /4 RU, r=R. Else r=r P >R. Magnus Force Fz=- U =-∫P(R).sin Rd on the solid. No viscous dissipation (no drag force). U Stream lines PressureForce
7
Air foil / birds wing Conformal mapping Joukowski’s transform: Z= g(z) = Stream linesPressureForce
8
Perfect potential flow around a sphere: Spherical coordinates Uniform flow + 3D dipole velocity decrease ~1/r 3. Viscous flow around a sphere: the Stoke’s force Boundary conditions: Low velocity decrease ~1/r. Stoke’s force.
9
II. Capillary forces Surface tension
10
Definition of capillary forces. At the interface between different phases/different chemical composition Effective force insuring the equilibrium Energy per unit surface: , « surface tension » « capillary force »
11
Water 20°C =72.8 mN/mEthanol 20°C =22.10 mN/m Molecular Dynamics Simulations at constant T and V (L. Joly, LPMCN) cf. lecture 7 Examples: Liquid/vapor interface
12
Comparison with gravitational forces: h area AV=h.A Total Energy: E interfaces ≈ A.( LV + SL - SV ) E gravity ≈ 0.5 .g.h 2.A E gravity >> E interfaces for h>> lc « capillary length » l c =2,7 mm for water et 20°C
13
Examples: Liquid/solid interfaces (without gravity) Contact angle 0< <90°: liquid is « partially wetting » 90°< : liquid is « non wetting » =0°: « complete wetting »
14
3
15
Effect of the curvature on the pressure: Laplace’s law Δp for water drops of different radii at STPSTP Droplet radius1 mmmm0.1 mm1 μmμm10 nmnm Δp (atm)atm0.00140.01441.436143.6 11 11 (1749-1827)
16
Example: Alveoli of the lungs R ≈ 50 m P≈2,8.10 3 Pa if water. P smaller with a surfactant ≈ 5 to 45.10 -3 N.m -1 Allows a common work of all the alveoli. Else: PBPB PCPC P B > P C. The small bubble will lose air
17
Example 2: droplet between 2 plates. R r LV =70 mN.m -1 =130° V=10 -1 cm 3 h= 100 m F P = 0,95 N F C = 6,25.10 -3 N h= 1 m F P = 9500 N ! F C = 6,25.10 -2 N h= 1 nm F P = 95.10 8 N !! F C = 1,98 N E. Csapo (2007)
18
Example 3: ascent of a liquid in a thin tube (d<l c ). Jurin’s law For water at 20°C with =0° R=1mm h=1,46 cm R=10 m h=1,46 m R=1 m h=14,6 m !
19
Sap and trees:
20
Example 4: Shape of the Meniscus in a free surface x z P ext
21
Interactions between 2 plates: I.II.III. Vertical Capillary forces:T = -2. .cos .L e z Horizontal Pressure forces:F P = ∫P(z).dz.L e x = 0.5 gL.[ h 2 2 (o)-h 1 2 (0)] e x with boundary conditions: I.h 1 (-∞)=0h 1 ’(x=0)=cotan 1 II.h2’(x=0)=-cotan 1 h2’(x=d)=cotan 2 III.h3’(x=d)=-cotan 2 h3(+∞)=0
22
I.II.III. If 1= 2 If d<<l c F P ≈ 2 .l c 2.L.(cotan 1 ) 2 /d 2 e x If d>>l c F P ≈ 2 .L.(cotan 1 ) 2.exp(-d/l c ) e x ≈ -T. cotan 1.exp(-d/l c ) e x Attractive forces (either for wetting or non-wetting surfaces) If cotan 1.cotan 2<0 If d << l c F P ≈ 2 .l c 2.L.(cotan 1 + cotan 2 ) 2 /d 2 e x Attractive Force If d=d* F P ≈ - 0.5 .L.(cotan max ) 2 e x Max. Repulsive Force If d > d* F P <0 Repulsive Force at large distances. d*=l c.acosh(|cotan min /cotan max |) wetting Non wetting
24
Beetle Larva
25
III. Related instabilities
26
The Marangoni effect: Effect of boundary conditions Gradient of surface tension on the upper free surface (cf. lecture 3) Ex. Temperature gradient // surface, Chemical gradient (soap on water, Tears of wine: alcohol in water) Navier-Stokes equation: Motion in the direction of larger surface tension (flow from alcohol to water, hot places to cold places..)
28
The Bénard-Marangoni instability: Local gradient of temperature (cf. Marangoni) Flow due to coupling between T and v Fourier’s law (cf. lecture 4) Marangoni number:
29
The Taylor-Couette instability: (Couette 1921, Taylor 1923) Volumic competition between inertia and viscous forces when motion is driven by the internal cylinder. Taylor number:
30
Next lecture: From Liquid to Solid, Rheological behaviour (Lecture 6)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.