Presentation is loading. Please wait.

Presentation is loading. Please wait.

Analyze Statistic by Using SPSS

Similar presentations


Presentation on theme: "Analyze Statistic by Using SPSS"— Presentation transcript:

1 Analyze Statistic by Using SPSS
Statistics and useing SPSS Analyze Statistic by Using SPSS 3rd Day Fadwa Flemban

2 الاعجاز الرقمي في القرآن الكريم
الرقم 7 له مدلول كبير في القرآن والكون والحياة ، فعدد أحرف الأبجدية العربية (لغة القرآن) هو 28 حرفاً (أي 7 × 4) ، والحديث الصحيح (أُنزل القرآن على سبعة أحرف) يؤكد أن الرقم 7 له علاقة بالقرآن ، وقد خلق اللّه تعالى سبع سماوات وسبع أراضين وجعل الجمعة سبعة أيام . أما عبادة الحج فتعتمد على الرقم 7 (سبعة أشواط في الطواف والسعي) وسبع جمرات . والذي لا يؤمن بكل هذا فجزاؤه نار جهنم التي خلق لها اللّه تعالى سبعة أبواب لكل بابٍ ملاحظة : كلمة جهنم تكررت في القرآن 77 مرة أي 7 × 11 . ولا ننسى أن أعظم سورة في القرآن هي الفاتحة التي سمَّاها اللّه [ السبع المثاني ] ، عدد آياتها 7 . كما أن عبارة السماوات السبع (وسبع سماوات) تكررت في القرآن 7 مرات بالضبط . كلمة [ سبعة ] تكررت في القرآن 4 مرات في الآيات التالية : 1 ـ { فَصِيَامُ ثَلَاثَةِ أَيَّامٍ فِي الْحَجِّ وَسَبْعَةٍ إِذَا رَجَعْتُمْ } [ البقرة : 196 [ 2 ـ { لَهَا سَبْعَةُ أَبْوَابٍ لِكُلِّ بَابٍ مِنْهُمْ جُزْءٌ مَقْسُومٌ } [ الحجر : 44 [ 3 ـ { وَيَقُولُونَ سَبْعَةٌ وَثَامِنُهُمْ كَلْبُهُمْ } [ الكهف : 22 [ 4 ـ { مِنْ بَعْدِهِ سَبْعَةُ أَبْحُرٍ مَا نَفِدَتْ كَلِمَاتُ اللَّهِ] { لقمان : 27 [ كلمة [ سبعة ] تكررت في القرآن 4 مرات لقمان الكهف الحج البقرة اسم السورة رقم الآية = 7 × = 7 × 7 × إذاً : العدد الذي يمثل الآيات الأربعة (التي وردت فيها كلمة [ سبعة]) يقبل القسمة على 7 مرتين متتاليتين ، فمن الذي نظَّم مواضع هذه الكلمة بهذا التناسب المذهل مع الرقم 7 ؟ أليس هو اللّه ؟ Fadwa Flemban

3 Chi-Squared Tests اختبارات مربع كاي
(1) Goodness of fit tests (2) Independent tests (3) Homogeneity tests Fadwa Flemban

4 (1) Goodness of fit tests اختبار جودة التوفيق
لمقارنة توزيع البيانات مع عدة توزيعات احتمالية وهي: 1- التوزيع الطبيعي Normal Dist. 2 - توزيع بواسون Poisson Dist. 3- التوزيع الأسي Exponential Dist. 4- التوزيع المنتظم Uniform Dist. Fadwa Flemban

5 (1) Goodness of fit tests اختبار جودة التوفيق
Hypotheses of Test : Hₒ: The data are consistent with a S distribution. : Hₒ البيانات تتبع التوزيع س. H1: The data are not consistent with S distribution. H1: البيانات لا تتبع التوزيع س. Fadwa Flemban

6 Goodness of fit tests Example
This data are representing the number of persons who ate the dinner in a small restaurant on 50 days: Is a variable of the persons' number who ate the dinner in the restaurant following the normal distribution at the level of significance (0.05)? 20 12 16 19 24 6 10 1 15 23 8 30 25 7 22 5 14 27 21 18 4 17 9 Fadwa Flemban

7 Solution Hₒ: The data are consistent with the normal distribution.
H1: The data are not consistent with the normal distribution. Fadwa Flemban

8 Normality Test two way: By
(1) Analyze  Descriptive Statistics Explore Plots  check in Normality plots with test Fadwa Flemban

9 Normality Test for (male)
Fadwa Flemban

10 Normality Test for (female)
Fadwa Flemban

11 Output بما أن : جميع النقاط تقع على وحول الخط المستقيم إذن :
العينة تتبع التوزيع الطبيعي Fadwa Flemban

12 Normality Test two way: By
(2) Analyze  Nonparametric test  1-sample kolmogorov-smirnov test Fadwa Flemban

13 Analyze  Nonparametric test  1-sample kolmogorov-smirnov test
Fadwa Flemban

14 Fadwa Flemban

15 Output : P-value (0.898)>α(0.05) We don't reject Hₒ
the persons' number who ate the dinner in the restaurant following the normal distribution at degree of confidence 95%. Fadwa Flemban

16 Make the same steps but : Choose Poison test distribution
Fadwa Flemban

17 Output : P-value (0.047)<α(0.05) We reject Hₒ
the persons' number who ate the dinner in the restaurant don’t following the Poisson distribution at degree of confidence 95%. Fadwa Flemban

18 (2) Independent tests اختبارات الاستقلال
Hypotheses of Test : H0: The variables are independent. H1: The variables are not independen. : Hₒ المتغيران مستقــلان. H1: المتغيران غيرمستقــلان, أي توجد علاقة بينهما. Fadwa Flemban

19 Independent tests Example
In a study of the relationship between the grade of student in the university and his gender: There is a relationship between the student’s grade & his gender? F B A D Female C F C B A Male D Fadwa Flemban

20 Solution Hₒ: The student’s grade & his gender are independent.
H1: There is a relationship between the student’s grade & his gender. Fadwa Flemban

21 Analyze  Descriptive Statistics Crosstabs
Fadwa Flemban

22 Crosstabs Window: Press Statistics button Fadwa Flemban

23 Chi-square to Independent Test
Fadwa Flemban

24 The two variables are independent
P-value = 0.656 P-value > 0.05 We don’t reject Hₒ The two variables are independent Fadwa Flemban

25 (3) Homogeneity tests اختبارات التجانس
للإجابة عن السؤال: هل تكرارات المشاهدات موزعة بشكل متجانس (متماثل) بين فئات المجتمع. Hypotheses of Test : H0: Pi1= Pi2 =…………= Pis OR σ²1=σ²2=……= σ²i H1: at least one of the null hypothesis statements is false. Fadwa Flemban

26 Homogeneity tests Example for Clarification
In a study of the television viewing habits of children, a developmental psychologist selects a random sample of 300 first graders boys and 200 girls. Do the boys' preferences for these TV programs differ significantly from the girls' preferences? Use a 0.05 level of significance. Rows total The Simpsons Sesame Street Lone Ranger 100 20 30 50 Boys 200 70 80 Girls 300 90 110 Column total Fadwa Flemban

27 Mathematical Solution
H0: Pboys who prefer Lone Ranger = Pgirls who prefer Lone Ranger H0: Pboys who prefer Sesame Street = Pgirls who prefer Sesame Street H0: Pboys who prefer The Simpsons = Pgirls who prefer The Simpsons H1: At least one of the null hypothesis statements is false. DF = (r - 1) * (c - 1) = (2 - 1) * (3 - 1) = 2 Er,c = (nr * nc) / n E1,1 = (100 * 100) / 300 = 10000/300 = 33.3 E1,2 = (100 * 110) / 300 = 11000/300 = 36.7 E1,3 = (100 * 90) / 300 = 9000/300 = 30.0 E2,1 = (200 * 100) / 300 = 20000/300 = 66.7 E2,2 = (200 * 110) / 300 = 22000/300 = 73.3 E2,3 = (200 * 90) / 300 = 18000/300 = Χ2 = Σ [ (Or,c - Er,c)2 / Er,c ] Χ2 = ( )2/ ( )2/ ( )2/30     + ( )2/ ( )2/ ( )2/60 Χ2 = (16.7)2/ (-6.7)2/ (-10.0)2/30 + (-17.7)2/ (3.3)2/ (10)2/60 Χ2 = = 19.91 P(Χ2 > 19.91) = Since the P-value (0.0000) is less than the significance level (0.05), we cannot accept the null hypothesis. Fadwa Flemban

28 Homogeneity tests Example
We have the following data: 1- Are two factories homogeneity ? 2-Test the hypothesis, the factories them the same calories (by million calories),Use a 0.05 level of significance? Calories 8400 8230 8380 7860 7930 Factory 1 7510 7690 7720 8070 7660 Factory 2 Fadwa Flemban

29 Solution Hₒ : σ²1 = σ²2 H1 : σ²1 ≠ σ²2
NOTE: we have two variables (scale & nominal). Hypotheses of Homogeneity test: Hₒ : σ²1 = σ²2 H1 : σ²1 ≠ σ²2 Fadwa Flemban

30 Analyze  Compare means  Independent Samples
Fadwa Flemban

31 Define Groups Fadwa Flemban

32 The samples are Homogeneity
Output : P-value = 0.330 P-value > α We don’t reject Hₒ The samples are Homogeneity Fadwa Flemban

33 we reject Hₒ, the means of two factories are not equal.
Also: From t-test of equality of means: Hₒ : µ1=µ2 H1 : µ1≠µ2 Sig. = , α = 0.05 Sig. < α we reject Hₒ, the means of two factories are not equal. Fadwa Flemban

34 Summary In Nominal Variables
Normality Test Data from Normal Dist. T test Data not from Normal Dist. Non Parametric Tests Make Homogeneity Test Fadwa Flemban

35 Regression & Correlation الانحدار و الارتباط
Fadwa Flemban

36 Regression الانحدار استخدام معادلة خط الإنحدار في التنبؤ المستقبلي.
معادلة خط الإنحدار تستخدم للتنبؤ لقيم ”ضمن“ قيم المتغير المستقل. Fadwa Flemban

37 Simple linear Regression
الانحدار الخطي البسيط Simple linear Regression يستخدم الانحدار الخطي لتقدير معامل المتغير المستقل للمعادلة الخطية بغرض تقدير المتغير التابع فى حالة وجود متغير مستقل واحد فإن معادلة الخط تأخذ الصورة: Y = a + b*X حيث تعبر X عن المتغير المستقل وتعبر Y عن المتغير التابع. Fadwa Flemban

38 Example Suppose that X symbolize to the temperature between (3:00 pm & 4:00 pm) through the summer season, Y symbolize to electricity consumption representative by levels from 1 to 10 where level 10 is higher consumption. And the data were recorded during a period of 10 days: X: Y: - Draw the scatter diagram for this data? 2-Estimate the linear regression equation between (X,Y) at a temperature ? 3- If X=35, then the level of electricity consumption =…… Fadwa Flemban

39 mathematical solution
= 6.6 – (0.3073)(30.2) =

40 SPSS Solution 1- Graphs  Legacy Dialogs  Scatter/Dot  Fadwa Flemban

41 Simple Scatter  Define 
Fadwa Flemban

42 Output : To add the regression line on the chart: Double click on the chart add fit line at total linear  close Fadwa Flemban

43 the straight line is best representation to this data.
Output : the straight line is best representation to this data. The next step >> Fadwa Flemban

44 2- Analyze  Regression  Linear
Fadwa Flemban

45 Correlation Coefficient the linear regression equation
Output : Correlation Coefficient the linear regression equation Yi = Xi a = b = Fadwa Flemban

46 التنبؤ باستخدام معادلة الانحدار:
تقدير الاستهلاك من الطاقة الكهربائية عندما تكون درجة الحرارة 35 درجة مئوية معادلة خط الانحدار هي Yi = Xi بما أن X = 35 إذن استهلاك الطاقة الكهربائية يقدّر بـ : Y = (35) Y = 8.075 أ.فدوى فلمبان

47 Correlation الارتباط Can be used as another measure to determine strength of the relationship between and among phenomena, this measure is the correlation coefficient. Fadwa Flemban

48 Correlation الارتباط ان واحدا من اهم اهداف اى بحث هى إيجاد علاقات بين المتغيرات وذلك هو هدف أساسي لعلم الاحصاء. ويجب قبل حساب معاملات الارتباط للبيانات الكمية مشاهدة البيانات من خلال شكل الانتشار Scatter diagram وذلك لملاحظة طبيعة العلاقة (خطية او غير ذلك) او لملاحظة وجود قيم شاذة outliers والتى قد يؤدى وجودها الى نتائج مضللة. تنحصر قيمة معامل الارتباط بين 1- و 1+. إذا كانت قيمة معامل الإرتباط مساوية 1+ عندها يكون الإرتباط طردي تام، وكذلك عندما تكون قيمة معامل الإرتباط مساوية 1 - عندها يكون الإرتباط عكسي تام. Fadwa Flemban

49 Scatter Diagram this scatter diagram means the coefficient of correlation ( r=0) : There is no relationship between the variables or there is relationship but not linear. this scatter diagram means the coefficient of correlation (r=-1 or r=+1) : Of all points on the regression line which is the relationship between the variables (x,y). this scatter diagram means the coefficient of correlation (0<r<+1 or -1<r<0): All points concentrated around and above the regression line. Fadwa Flemban

50 Values of the correlation coefficients
Its mean +1 Perfect positive correlation -1 Perfect negative correlation 0.99 <r<0.90 Very strong positive correlation -0.90<r<-0.99 Very strong negative correlation 0.89<r<0.70 strong positive correlation -0.70<r<-0.89 strong negative correlation 0.69<r<0.50 Moderate positive correlation -0.50<r<-0.69 Moderate negative correlation 0.49<r<0.30 Weak positive correlation -0.30<r<-0.49 Weak negative correlation 0.29<r<0.01 Very weak positive correlation -0.01<r<-0.29 Very weak negative correlation r = 0 Zero correlation Fadwa Flemban

51 معاملات الارتباط تبعاً لقياس المتغيرات
Fadwa Flemban

52 Two different correlation techniques are available:
for quantitative variables 1- Pearson correlation coefficient for ordinal scales 2- Spearman correlation coefficient Fadwa Flemban

53 1- Pearson correlation coefficient
for quantitative variables Fadwa Flemban

54 Example Find the correlation between the outside temperature (y) and the height by thousands of foot (x) for a plane in different times. Height (x) Temperature (y) Calculate the coefficient of correlation between the height & the temperature? Fadwa Flemban

55 mathematical solution
No. x y x² y² xy . =18.4; = 4.8 Sx=3.2496; Sy=5.6071  It means there is strong negative correlation between the height & the temperature Fadwa Flemban

56 SPSS Solution 1- Graphs  Legacy Dialogs  Scatter/Dot Simple Scatter
Fadwa Flemban

57 Output : To add the regression line on the chart:
Double click on the chart add fit line at total linear  close Fadwa Flemban

58 the straight line is best representation to this data.
Output : the straight line is best representation to this data. The next step >> Fadwa Flemban

59 2- Analyze  Correlate  Bivariate
Fadwa Flemban

60 Bivariate Correlations Windows:
Fadwa Flemban

61 Output : From Output of correlation: r= -0.983
It means there is strong negative correlation between the height & the temperature. Fadwa Flemban

62 2- Spearman correlation coefficient
for ordinal scales Fadwa Flemban

63 Example If we have the grade of 5 students in both articles :
Statistics A C D F B Mathematics B C F D A Find the correlation between the students' grade in the statistics and the mathematics? Fadwa Flemban

64 mathematical solution
d squared d Rank of Stat Rank of Math Stat Math 1 -1 2 A B 3 C 4 5 D F Total There is strong positive correlation between the students' grade in the statistics and the mathematics. Fadwa Flemban

65 Solution by SPSS By same steps in the previous example: Fadwa Flemban

66 Analyze  Correlate  Bivariate
Fadwa Flemban

67 Output : From this table we find the same result: r=0.8,
there is strong positive correlation. Fadwa Flemban

68 معامل بيرسون للإرتباط يعكس ”خطية العلاقة“.
أخطاء شائعة استخدام معامل بيرسون للإرتباط لبيانات غير خطية لذلك يجب التأكد من ”خطية“ العلاقة بين الظاهرتين. معامل بيرسون للإرتباط يعكس ”خطية العلاقة“. Fadwa Flemban

69 Question ??? A national consumer magazine reported the following correlations. 1-The correlation between car weight and car reliability is The correlation between car weight and annual maintenance cost is Which of the following statements are true? I. Heavier cars tend to be less reliable. II. Heavier cars tend to cost more to maintain. III. Car weight is related more strongly to reliability than to maintenance cost. Fadwa Flemban

70 Statistical Humor A ONE-WAY ANOVA shouted at a TWO-WAY ANOVA: "STOP! Turn around - You are going the wrong way!" The TWO-WAY ANOVA yelled back: "Sorry! I will turn when I see an interaction!" Fadwa Flemban


Download ppt "Analyze Statistic by Using SPSS"

Similar presentations


Ads by Google