Presentation is loading. Please wait.

Presentation is loading. Please wait.

Hadron Physics @ Klaus Peters Ruhr-Universität Bochum Santiago de Campostela, Oct 27, 2003.

Similar presentations


Presentation on theme: "Hadron Physics @ Klaus Peters Ruhr-Universität Bochum Santiago de Campostela, Oct 27, 2003."— Presentation transcript:

1 Hadron Physics @ Klaus Peters Ruhr-Universität Bochum Santiago de Campostela, Oct 27, 2003

2 The Panda Physics Program
Overview The Panda Physics Program Charmonium spectroscopy Charmed hybrids and glueballs Interaction of charmed particles with nuclei (Double) Hypernuclei Many further options Detector Concepts for Panda Conclusions K. Peters - Hadron Panda

3 QCD running coupling constant
transition from perturbative to non-perturbative regime Q2 [GeV2] 10 1 0.1 0.05 perturbative QCD constituent quark confinement mesons and baryons 0.3 Rn r [fm] perturbative strong QCD Transition from the quark-gluon to the hadronic degrees of freedom K. Peters - Hadron Panda

4 Objects of Interest SU(3)C Symmetry tells us that q3i+nq3j+ngk is color neutral i=1 j,n,k=0 baryon (B=i-j) i,j,k=0 n=1 meson i,j,n=0 k>1 glueball i,j=0 n=1 k>0 meson hybrid i=1 j,n=0 k>0 baryon hybrid i,n=1 j,k=0 penta quark i,j,k=0 n=2 four quark i,j,k=0 n=3 / i,j=3 k,n=0 baryonium (hexa quark) K. Peters - Hadron Panda

5 Objects of Interest Mesons/Baryons Molecules/Multiquarks Hybrids
AntiQuark Mesons/Baryons Molecules/Multiquarks Hybrids Glueballs + Effects due to the complicated QCD vacuum K. Peters - Hadron Panda

6 Light Meson Spectrum Lattice 1-+ 1.9 GeV 0++ 1.6 GeV exotic nonets
qq Mesons Each box corresponds to 4 nonets (2 for L=0) Radial excitations 2–+ 2.5 0–+ Hybrids 2++ 2+– 2–+ 1–– 2.0 1–+ exotic nonets Glueballs 1+– 1++ 1.5 Lattice GeV 0+– 0–+ 0++ 1.0 GeV L = 0 1 2 3 4 (L = qq angular momentum) K. Peters - Hadron Panda

7 Level Mixing Mixing (Light Quark) Better: Experimental approach:
broad states high level density Better: narrow states and/or lower level density charmed systems ! Experimental approach: Charm physics: Transition chiral to heavy quark limits Proton-Antiproton: rich hadronic source K. Peters - Hadron Panda

8 Charmonium Physics Open questions … … Exclusive Channels
hc – inconsistencies hc’ - y(2S) splitting h1c (1P1) unconfirmed Peculiar decays of y(4040) Terra incognita for any 2P and D-States … Exclusive Channels Helicity violation G-Parity violation Higher Fock state contributions K. Peters - Hadron Panda

9 Charmonium Physics e+e- interactions: cc1 pp reactions:
Only 1-- states are formed Other states only by secondary decays (moderate mass resolution) pp reactions: All states directly formed (very good mass resolution) 3500 3520 MeV 3510 CBall ev./2 MeV 100 ECM CBall E835 cc1 1000 E 835 ev./pb K. Peters - Hadron Panda

10 Resonance Cross Section
Resonance Scan ECM Resonance Cross Section Measured Rate Beam Profile small and well controlled beam momentum spread Dp/p is extremely important K. Peters - Hadron Panda

11 Charmonium Physics with pp
Expect 1-2 fb-1 (like CLEO-C) pp (>5.5 GeV/c) ® J/y 107/d pp (>5.5 GeV/c) ® cc2 (® J/y g) 105/d pp (>5.5 GeV/c) ® hc‘(® ff) 104/d|rec.? Comparison of to E835 Maximum energy 15 GeV/c instead of 9 GeV/c Luminosity 10x higher Detector with magnetic field – charged final states Dp/p 10x better Dedicated machine with stable conditions K. Peters - Hadron Panda

12 Charmed Hybrids Gluonic excitations of the quark-antiquark-potential may lead to bound states LQCD: P-potential of excited gluon flux in addition to S-potential for one-gluon exchange mHc ~ GeV/c2 Light charmed hybrids could be narrow if open charm decays are inaccessible or suppressed P S important <r2> and rBreakup K. Peters - Hadron Panda

13 S-Wave+Gluon (qq)8g with ()8=coloured 1S0 ­¯ 3S1 ­­
Simplest Hybrids S-Wave+Gluon (qq)8g with ()8=coloured 1S0 ­¯ 3S1 ­­ combined with a 1+ or 1- gluon Gluon 1– (TM) 1+(TE) 1S0, 0–+ 1++ 1–– 3S1, 1–– 0+- 0–+ 1+- 1–+ 2+- 2–+ Meson – Hybrid Mixing q g MIX g FSI Exotic JPC cannot! be formed by qq K. Peters - Hadron Panda

14 Charmed Hybrid Level Scheme
1-- (0,1,2)-+ < 1++ (0,1,2)+- JKM00, NPB83Suppl83(2000)304 and Manke, PRD57(1998)3829 L-Splitting Dm ~ MeV/c2 for 1-+ to 0+- S-Splittings Page thesis,1995 and PRD35(1987)1668 4.14 (0-+ ) to 4.52 GeV/c2 (2-+) consistent w/LQCD JKM, NPB86suppl(2000)397, PLB478(2000) 151 4.8 4.7 4.6 4.5 4.4 4.3 DD** 4.2 4.1 K. Peters - Hadron Panda

15 Charmed Hybrid Level Scheme
1-- (0,1,2)-+ < 1++ (0,1,2)+- JKM00, NPB83Suppl83(2000)304 and Manke, PRD57(1998)3829 L-Splitting Dm ~ MeV/c2 for 1-+ to 0+- S-Splittings Page thesis,1995 and PRD35(1987)1668 4.14 (0-+ ) to 4.52 GeV/c2 (2-+) consistent w/LQCD JKM, NPB86suppl(2000)397, PLB478(2000) 151 0+- 1+- 2+- 1++ 4.8 4.7 4.6 0-+ 1-+ 2-+ 1-- 4.5 4.4 4.3 DD** 4.2 4.1 K. Peters - Hadron Panda

16 Proton-Antiproton @ Rest/Flight
Production all JPC available Formation only selected JPC Gluon rich process creates gluonic excitation in a direct way cc requires the quarks to annihilate (no rearrangement) yield comparable to charmonium production formation yield 8:1 due to colour octet in hybrids K. Peters - Hadron Panda

17 Proton-Antiproton @ Rest/Flight
Production p _ G M p M H _ p M H _ all JPC available Formation p _ G p _ H p _ H only selected JPC Gluon rich process creates gluonic excitation in a direct way cc requires the quarks to annihilate (no rearrangement) yield comparable to charmonium production formation yield 8:1 due to colour octet in hybrids Momentum range for a survey pp ® ~15 GeV K. Peters - Hadron Panda

18 Exotics in Proton-Antiproton
Exotics are heavily produced in pp reactions High production yields for exotic mesons (or with a large fraction of it) f0(1500)p ® ~25 % in 3p0 f0(1500)p ® ~25 % in 2hp0 p1(1400)p ® >10 % in p±p0h Crystal Barrel Interference with other well known (conventional) states is mandatory for the phase analysis K. Peters - Hadron Panda

19 Open charm discoveries
The DS± Spectrum |cs> +c.c. was not expected to reveal any surprises, but chiral and heavy quark aspects meet Potential model Old measurements New observations m [GeV/c2] Ds1 Ds2 D*K DsJ (2458) D0K # 1267  53 Events in peak DsJ* (2317) Ds* Combinatorial DS*+ g DS*+(2112) DsJ*(2317) Ds BABAR 0- 1- 0+ 1+ 2+ 3- JP K. Peters - Hadron Panda

20 Heavy Glueballs Light gg/ggg-systems are complicated to identify (mixing!) Exotic heavy glueballs m(0+-) = 4140(50)(200) MeV m(2+-) = 4740(70)(230) MeV Width unknown, but! nature invests more likely in mass than in momentum newest proof: double cc yield in e+e- Flavour-blindness predicts decays into charmed final states too Same run period as hybrids In addition: scan m>2 GeV/c2 Morningstar und Peardon, PRD60 (1999) Morningstar und Peardon, PRD56 (1997) 4043 K. Peters - Hadron Panda

21 Accessible cc-Hadrons at PANDA @ HESR @ GSI
mass and phase space of recoil meson for exotic JPC included conventional charmonium Other exotics with identical decay channels ® same region K. Peters - Hadron Panda

22 Charmed Hadrons in Nuclear Matter
Partial restoration of chiral symmetry in nuclear matter Light quarks are sensitive to quark condensate Evidence for mass changes of pions and kaons has been deduced previously: deeply bound pionic atoms (anti-)kaon yield and phase space distribution D-Mesons are the QCD analogue of the H-atom. chiral symmetry to be studied on a single light quark vacuum nuclear medium p K 25 MeV 100 MeV K+ K- p- p+ Hayaski, PLB 487 (2000) 96 Morath, Lee, Weise, priv. Comm. D- 50 MeV D D+ K. Peters - Hadron Panda

23 Open Charm in the Nuclei
The expected signal: strong enhancement of the D-meson cross section, relative D+ D- yields, in the near/sub-threshold region. Complementary to heavy ion collisions T~0 in-medium free masses bare D+D- 10-2 10-1 1 10 102 103 s(nb) 4 5 6 7 D- spA spA (A) = ? AspN AspN D+ T (GeV) K. Peters - Hadron Panda

24 Charmonium in the Nuclei
GeV/c2 Mass Lowering of the D+D- mass allow charmonium states to decay into this channel, thus resulting in a dramatic increase of width y(1D) Γ=20®40 MeV y(2S) Γ=0,32®2,7 MeV Experiment: Dilepton-Channels and/or highly constrained hadronic channels Idea Study relative changes of yield and width of the charmonium states. y(33S1) 4 3.8 y(13D1) 3,74 3,64 3,54 vacuum 1r0 2r0 y(23S1) 3.6 cc2(13P2) cc1(13P1) 3.4 cc1(13P0) 3.2 y(13S1) hc(11S0) 3 K. Peters - Hadron Panda

25 J/y Absorption in Nuclei
Important for the understanding of heavy ion collisions Related to QGP p K. Peters - Hadron Panda

26 J/ψ Absorption in Nuclei
Important for the understanding of heavy ion collisions Related to QGP Reaction p + A  J/ψ + (A-1) Fermi-smeared cc-Production J/ψ, ψ’ or interference region selected by p-Momentum Longitudinal und transverse Fermi-distribution is measurable J/y s(e+e-) pb p(pbar) GeV/c 200 100 3.5 4.5 4.0 5.0 FF J/y K. Peters - Hadron Panda

27 Further Experiments and Optional extensions
Hypernuclear physics 3rd dimension of nuclear chart Focus: Double Hypernuclei Inverted DVCS - WACS Measure dynamics of quarks and gluons in a hadron Handbag diagram – electromagnetic final states Proton Formfactors at large Q2 s up to 25 GeV2/c4 D(S)-Physics Spectroscopy: Threshold production BR and decay dalitz plots with high statistics CP-Violation in the D-Sector K. Peters - Hadron Panda

28 The Antiproton Facility
K. Peters - Hadron Panda

29 The Antiproton Facility
Antiproton production similar to CERN, HESR = High Energy Storage Ring Production rate 107/sec Pbeam = GeV/c Nstored = 5 x 1010 p Gas-Jet/Pellet/Wire Target High luminosity mode Luminosity = 2 x 1032 cm-2s-1 Dp/p ~ (stochastic cooling) High resolution mode Dp/p ~ (electron cooling) Luminosity = 1031 cm-2s-1 K. Peters - Hadron Panda

30 Proposed Detector (Overview)
High Rates Total σ ~ 55 mb Vertexing (σp,KS,Λ,…) Charged particle ID (e±,μ±,π±,p,…) Magnetic tracking Elm. Calorimetry (γ,π0,η) Forward capabilities (leading particles) Sophisticated Trigger(s) K. Peters - Hadron Panda

31 Participating Institutes (with Representative in the Coordination Board)
42 Institutes (35 Locations) from 9 Countries: Austria - Germany – Italy – Netherlands – Poland – Russia – Sweden – U.K. – U.S. U Oriente, Alessandria U Bochum U Bonn U & INFN Brescia U Catania U Cracow GSI Darmstadt TU Dresden JINR Dubna I + II U Edinburgh U Erlangen NWU Evanston U & INFN Ferrara U Frankfurt LNF-INFN Frascati U & INFN Genova U Glasgow U Gießen KVI Groningen IKP Jülich I + II U Katowice U Mainz TU München U Münster BINP Novosibirsk U Pavia U of Silesia U Stockholm U Torino Politechnico di Torino U & INFN Trieste U Tübingen U & TSL Uppsala IMEP Vienna SINS Warsaw K. Peters - Hadron Panda

32 Competition BES, BNL, CLEO-C, DaΦne, Hall-D, JHF Topic Competitor
Confinement Charmonium all cc states with high resolution CLEO-C only 1–– states Gluonic Excitations charmed hybrids heavy glueballs CLEO-C light glueballs Hall-D light hybrids Nuclear Interactions D-mass shift J/ψ absorption (T~0) DaΦne K-mass shift Hypernuclei γ-spectroscopy of Λ- and ΛΛ–hypernuclei BNL indirect evidence only JHF single HN Open Charm Physics Rare D-Decays CP-physics in Hadrons CLEO-C rare D-Decays CP-physics in D-Mesons ν,K-beams JHF rare K-Decays (?) neutrino physics K. Peters - Hadron Panda

33 high resolution spectroscopy with p-beams in formation experiments:
Why Antiprotons ? high resolution spectroscopy with p-beams in formation experiments: ΔE  ΔEbeam high yields of gluonic excitations in pp glueballs, charmed hybrids event tagging by pair wise associated production, (particle, anti-particle) e.g. ppDD large √s at low momentum transfer important for in-medium "implantation" of hadrons: study of in-medium effects of charmed states K. Peters - Hadron Panda

34 The antiproton facility HESR @ GSI addresses many important questions
Summary & Outlook Investigation of charmed hadrons and their interaction with matter is a mandatory task for the next decade The antiproton facility GSI addresses many important questions A high performance storage ring and detector are envisaged to utilize a luminosity of L=2∙1032 cm-2s-1 K. Peters - Hadron Panda


Download ppt "Hadron Physics @ Klaus Peters Ruhr-Universität Bochum Santiago de Campostela, Oct 27, 2003."

Similar presentations


Ads by Google