Download presentation
Presentation is loading. Please wait.
1
Quick Chain Rule Differentiation Type 1 Example
Differentiate y = √(3x3 + 2)
2
First put it into indices
y = √(3x3 + 2) = (3x3 + 2)½
3
y = √(3x3 + 2) = (3x3 + 2)½ Now Differentiate
dy/dx = ½(3x3 + 2)-½ 9x2 Differentiate the inside of the bracket Differentiate the bracket, leaving the inside unchanged
4
A General Rule for Differentiating y = (f(x))n
dy/dx = n(f(x))n-1 f ´(x) Differentiate the bracket, leaving the inside unchanged Differentiate the inside of the bracket
5
Quick Chain Rule Differentiation
Type 2 Example Differentiate y = e(x3+2)
6
y = e(x3+2) e(x3+2) Differentiating dy/dx = 3x2
Write down the exponential function again Multiply by the derrivative of the power
7
A General Rule for Differentiating
dy/dx = f ´(x) y = ef(x) ef(x) Multiply by the derrivative of the power Write down the exponential function again
8
Quick Chain Rule Differentiation Type 3 Example
Differentiate y = In(x3 +2)
9
y = In(x3 +2) Now Differentiate dy/dx = 1 3x2 = 3x2 x3 + 2 x3 + 2
One over the bracket Times the derrivative of the bracket
10
A General Rule for Differentiating
y = In(f(x)) dy/dx = f ´(x) = f ´(x) f(x) f(x) Times the derrivative of the bracket One over the bracket
11
f(x) e(f(x)) Summary f ´(x) e(f(x)) f ´(x) In(f(x))
n(f(x))n-1 f ´(x) (f(x))n dy/dx y
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.