Presentation is loading. Please wait.

Presentation is loading. Please wait.

 Yves Le Traon 2002 Building Trust into OO Components using a Genetic Analogy Yves Le Traon and Benoit Baudry

Similar presentations


Presentation on theme: " Yves Le Traon 2002 Building Trust into OO Components using a Genetic Analogy Yves Le Traon and Benoit Baudry"— Presentation transcript:

1  Yves Le Traon 2002 Building Trust into OO Components using a Genetic Analogy Yves Le Traon and Benoit Baudry Yves.Le_Traon@irisa.fr

2  Yves Le Traon 2002 Summary  The problem: trustable components  Component qualification with mutation analysis  Genetic algorithms for test enhancement  A new model: bacteriological algorithms for test enhancement  A mixed-approach and tuning of the parameters  Conclusion

3  Yves Le Traon 2002 Testing for trust Safely Object-oriented paradigm Reuse Trust the better you test, the more trustable your component is

4  Yves Le Traon 2002 Specification Implementation V & V : checking Implementation against Specification Trust based on Consistency Derived as executable contracts Testing for trust

5  Yves Le Traon 2002 Testing for trust  We use a mutation analysis  we inject simple errors in the class  we create mutants  we write tests to detect the mutants  the tests kill the mutants  two ways to detect mutants  by comparing behaviors  with an oracle function: contracts

6  Yves Le Traon 2002 Basic level of trust = high level of trust “Replay” Tests Context adaptative Tests reuse Components test quality Component Trust Trusting Components? Test Quality Estimate Component Trust Estimate

7  Yves Le Traon 2002 Basic level of trust = high level of trust “Replay” Tests Context adaptative Tests reuse Components test quality Component Trust Trusting Components? Test Quality Estimate Component Trust Estimate

8  Yves Le Traon 2002 Trusting Components? Building Unit Tests Specifying the Component Design-by-contract What is the accepted domain of use ? What guarantees the component execution ? Executable Contracts  The Design of a Trustable Component Implementing it... Implementation OK Test Quality Estimate debug Embedding Test Suite Self-Tests Trust Validating it... No Trust

9  Yves Le Traon 2002 How Can You Trust a Component? Specification Implementation V & V: checking Implementation against Specification (oracle) (e.g., embedded tests) Measure of Trust based on Consistency Contract between the client and the component

10  Yves Le Traon 2002 Trusting Components?  The point of view of the user... Components “off-the-shelf” ?

11  Yves Le Traon 2002 Trusting Components?  The point of view of the user... Components “off-the-shelf” 85% “replay” selftests 100% 55% 100%

12  Yves Le Traon 2002 Trusting Components?  Plug-in the component in the system Specification Test Component Impl. System selftest tests selftest tests Continuity Strategy Test dependencies between a component and its environment

13  Yves Le Traon 2002 Principle & Applications  Embed the test suite inside the component  Implements a SELF_TESTABLE interface  Component Unit Test suite =  Test data + activator  Oracle (mostly executable assertions from the component specification)  Useful in conjunction with  Estimating the Quality of the Component  Integration Testing

14  Yves Le Traon 2002 Example with UML SET_OF_INTEGER empty : Boolean full : Boolean has (x : Integer) : Boolean put (x : Integer) {pre: not full} {post: has (x); not empty} prune (x : Integer) {pre: has (x); not empty} {post: not has (x); not full}

15  Yves Le Traon 2002 Example with Eiffel class SET_OF_INTEGERS -- implements a simplified set of integers. creation make feature -- creation make -- allocate a set of integers ensure empty: empty; feature {ANY} -- status report empty: BOOLEAN -- is the set empty? full: BOOLEAN -- is the set full ? feature {ANY} -- access has(x: INTEGER): BOOLEAN -- is x in the set ? feature {ANY} -- Element changes put(x: INTEGER) -- put x into the set require not_full: not full; ensure has: has(x); not_empty: not empty; prune(x: INTEGER) -- remove x from the set. require has: has(x); not_empty: not empty; ensure not_has: not has(x); not_full: not full; end -- class SET_OF_INTEGERS inherit SELF_TESTABLE, self_test feature {TEST_DRIVER} -- for testing purpose only tst_add -- test add tst_prune -- test ‘prune’ and ‘add’ tst_suite -- Called by template method ‘self_test’ -- to execute all tst_* methods.

16  Yves Le Traon 2002 Execution of class SET_OF_INTEGERS Self Test Test sequence nb. 1 is add usable? put - empty - full -------------- - empty at create... Ok - not empty after put... Ok..... >>>> DIAGNOSIS on class SET_OF_INTEGERS <<<< test(s) are OK. Method call statistics has : 37 full : 33 prune : 3 empty : 47 index_of : 40 put : 14....

17  Yves Le Traon 2002 Component qualification with mutation analysis Mutation operators Case study The problem of automating the test enhancement process

18  Yves Le Traon 2002 The Triangle View of a component Specification Implementation V & V: checking Implementation against Specification (oracle) (e.g., embedded tests) Measure of Trust based on Consistency Contract between the client and the component

19  Yves Le Traon 2002 Assessing Consistency  Assume the component passes all its tests according to its specification  Component’s implementation quality linked to its test & specification quality  How do we estimate test & spec consistency?  Introduce faults into the implementation  mutant implementations  Check whether the tests catch the faults  the tests kill the mutants

20  Yves Le Traon 2002 put (x : INTEGER) is -- put x in the set require not_full: not full do 1 if not has (x) then 2 count := count + 1 3 structure.put (x, count) end -- if ensure has: has (x) not_empty: not empty end -- put - 1 Remove-inst Limited Mutation Analysis

21  Yves Le Traon 2002 Class A Selftest A Generation of mutants mutantA6 mutantA5 mutantA4 mutantA3 mutantA2 mutantA1 Test Execution mutantAj alive Diagnosis Equivalent mutant 1 Incomplete specification 2 Consider Aj as 3 Enhance Selftest mutantAj killed SelfTest OK ! Add contracts to the specification Error detected Error not detected Automated process Non automated process Overall Process

22  Yves Le Traon 2002 About Living Mutants  What if a mutant is not killed?  Tests inadequate => add more tests  Specification incomplete => add precision  Equivalent mutant => remove mutant (or original!)  e.g., x x<=y ? x:y

23  Yves Le Traon 2002  Trust estimating : Score of mutation analysis  d : Number of killed mutants  m : Number of generated mutants which are not equivalent Component qualification d m MS =

24  Yves Le Traon 2002 Quality Estimate = Mutation Score  Q(Ci) = Mutation Score for Ci = d i /m i  d i = number of mutants killed  m i = number of mutants generated for Ci  WARNING: Q(Ci)=100% not=> bug free  Depends on mutation operators (see next slide)  Quality of a system made of components  Q(S) =  d i /  m i

25  Yves Le Traon 2002 Specification Test Impl. System selftest tests selftest tests 120/184 65/100 378/378 234/245 (184 + 100 + 378 + 245) System test Quality Q(S) = (120 + 65 + 378 + 234) = 87,8 %

26  Yves Le Traon 2002 Component qualification TypeDescription EHFException Handling Fault AORArithmetic Operator Replacement LORLogical Operator Replacement RORRelational Operator Replacement NORNo Operation Replacement VCPVariable and Constant Perturbation MCRMethods Call Replacement RFIReferencing Fault Insertion Mutation operators

27  Yves Le Traon 2002 Mutation operators (1)  Exception Handling Fault  causes an exception  Arithmetic Operator Replacement  replaces e.g., ‘+’ by ‘-’ and vice-versa.  Logical Operator Replacement  logical operators (and, or, nand, nor, xor) are replaced by each of the other operators;  expression is replaced by TRUE and FALSE.

28  Yves Le Traon 2002 Mutation operators (2)  Relational Operator Replacement  relational operators (, =, =, /=) are replaced by each one of the other operators.  No Operation Replacement  Replaces each statement by the Null statement.  Variable and Constant Perturbation  Each arithmetic constant/variable: ++ / --  Each boolean is replaced by its complement.

29  Yves Le Traon 2002 Mutation operators (3)  Referencing Fault Insertion (Alias/Copy)  Nullify an object reference after its creation.  Suppress a clone or copy instruction.  Insert a clone instruction for each reference assignment.

30  Yves Le Traon 2002 Outline of a Testing Process  Select either:  Quality Driven: select wanted quality level = Q(Ci)  Effort Driven: Maximum #test cases = MaxTC  Mutation Analysis and Test Cases Enhancement  while Q(Ci) < Q(Ci) and nTC <= MaxTC  enhance the test cases (nTC++)  apply test cases to each mutant Eliminates equivalent mutants  computes new Q(Ci)

31  Yves Le Traon 2002 A test report 119 mutants, 99 dead, 15 equivalentsMS= 99/104=95% id_mutEQMETHODESOURCEMUTANTCOMMENTAIRE 21emptycount =lower_bound – 1count <=lower_bound – 1jamais < 62fullcount =upper_boundcount >=upper_boundjamais > 163index_of – loop variantcount + 2 count * 2 même 244index_of – loop until count or else structurecount or structure court test 305make count := 0(nul) valeurdéfaut 456makelower_bound,upper_bound (lower_bound – 1 ),upper_bound redondance 467makelower_bound,upper_bound lower_bound, (upper_bound + 1 ) redondance 60Ifullcount = + 1 = testinsuf. 63IIfullupper_bound; (upper_bound – 1 ); testinsuf. 72IIIput if not has (x) thenif true then Spec inc. 75IVput if not has (x) thenif not false then Spec inc. 988index_of – loop variant- Result) - Result + 1 ) même 999index_of – loop variant- Result) - Result - 1 ) même 10010index_of – loop variantcount + 2 - (count + 2 + 1 ) - même 10111index_of – loop variantcount + 2 - (count + 2 – 1 ) - même 10212index_of – loop variantcount + 2 - (count + 1 ) + 2 - même 10313index_of – loop variantcount + 2 - (count – 1 ) + 2 - même 10414index_of – loop variant count + 2 -(count + 3 - même 10515index_of – loop variant count + 2 -(count + 1 - même 110Vindex_of – loop until> count or > (count + 1 ) or test insuf. NON EQUIVALENT EQUIVALENT

32  Yves Le Traon 2002 Global Process initial tests generation and bugs correction (tester’s work). automatic optimization of the initial tests set measure contracts efficiency Improve contracts Oracle function reconstruction equivalent mutants suppression remaining bugs correction 1 2 3 4 5 6 contracts test impl. contracts test impl. MS=trust contracts test impl. MS=trust contracts test impl. contracts test impl. MS= trust contracts test impl. Automated process

33  Yves Le Traon 2002 Oracle  Oracle par différence de comportements  Des traces  Des objets « programmes »  Oracle embarqués (contrats, assertions)  Interne au composant  Oracle associé aux données de test  Extérieur au composant  Oracle spécifique à la donnée de test

34  Yves Le Traon 2002 A short cases study  Building a self-testable library : date-time

35  Yves Le Traon 2002 A short cases study  Results p_date.ep_time.ep_date_time.e Total number of mutants673275199 Nbr equivalent491815 Mutation score100% Initial contracts efficiency10,35%17,90%8,7% Improved contracts efficiency 69,42%91,43%70,10% First version test size1069378 Reduced tests size723344

36  Yves Le Traon 2002 A short cases study  Robustness of the selftest against an infected environment  p_date_time selftest robustness

37  Yves Le Traon 2002 Partial conclusion  An effective method to build ( some level of) ‘trust’  estimate the quality a component based on the consistency of its 3 aspects:  specification (contract)  tests  implementation  be a good basis for integration and non-regression testing  A tool is currently being implemented  for languages supporting DbC:  Eiffel, Java (with iContract), UML (with OCL+MSC)...

38  Yves Le Traon 2002 Mutation for Unit and System testing  System testing  Combinatory explosion of the #mutants  Determination of equivalent mutant unrealistic  A subset of operators must be chosen to deal with these constraints  A strategy for injecting faults ?  Specific operators ?

39  Yves Le Traon 2002 Mutation for Unit and System testing

40  Yves Le Traon 2002 Mutation for Unit and System testing

41  Yves Le Traon 2002 Case study Queue Stack Linked_list Sequence_list Date_const Linked_iteratorSequence_iterator Tree_level_iterator Tree_past_iterator Tree_pre_iterator Tree_iterator Sortable Container Text_object_manager Integer_decoder Date_time Time Date HASHABLE Text_object COMPARABLE Iterator Oneway_iteratorMutator Format Dictionary TableSetSearchable List CatalogHash_setPrime General_tree Traversable TreeHistory_list Oneway_traversable SequenceDispenser Tree_post_iterator Node Order_comparable Order_relationTree_nodeLinked_node Random System Math Dict_node

42  Yves Le Traon 2002 Genetic algorithms for test enhancement

43  Yves Le Traon 2002 Test enhancement  Easy to reach a mutation score of 60%  Costly to improve this score  Test enhancement Genetic algorithms

44  Yves Le Traon 2002 Gas for test optimization  The issue : improving test cases automatically  Non linear problem  Gas may be adapted

45  Yves Le Traon 2002 Case study Class A Autotest A Mutant Generation mutantA6 mutantA5 mutantA4 mutantA3 mutantA2 mutantA1 Test Execution Diagnosis Incomplete specification 3 Automatic Improvement of selftest Automatic process Non automatic process Genetic Algorithm 1st step i-th version of Autotest A Step i New MS >Old MS yes determinist Improvement of selftest Add contracts to the specification 2 1 Look for equivalent mutants no

46  Yves Le Traon 2002 Class A mutantA5 mutantA6 mutantA7 mutantA8 mutantA9 mutantA10 mutantA1 mutantA2 mutantA3 mutantA4 Test Test1 Test2 Test3 Test4 Test5 Test6 Test enhancement Praises population

47  Yves Le Traon 2002 Test enhancement  The analogy  Test cases = predators = individuals  Mutants = population of prey

48  Yves Le Traon 2002 Test enhancement: Genetic algorithm  Genes  Individual  Operators  reproduction  crossover  mutation  Fitness function

49  Yves Le Traon 2002  Fitness function Mutation score  Individual Tests cases  For unit class testing  Gene {Initialization, Function calls} Test enhancement: Genetic algorithm

50  Yves Le Traon 2002 ind 1 = {G 1 1,... G 1 i, G 1 i+1,.. G 1 m } ind 2 = {G 2 1,... G 2 i, G 2 i+1,.. G 2 m } ind 3 = {G 1 1,... G 1 i, G 2 i+1,.. G 2 m } ind 4 = {G 2 1,... G 2 i, G 1 i+1,.. G 1 m } G = [I, S] G = [I, S mut ] S = (m 1 (p 1 ),…,m i (p i ),…m n (p n )) S mut = (m 1 (p 1 ),…,m i (p i mut ),…m n (p n )) G 1 = [I 1, S 1 ] G 2 = [I 2, S 2 ] G 3 = [I 2, S 1 ] G 4 = [I 1, S 2 ] G 5 = [I 1, S 1 S 2 ] G 6 = [I 2, S 2 S 1 ]  Operators  Crossover  Mutation for unit testing Test enhancement: Genetic algorithm

51  Yves Le Traon 2002 Test enhancement: Genetic algorithm  Gene modeling for system testing  Must be adapted to the particular system under test  In the case of the studied system (a C# parser)  If there are x nodes N in the file a gene can be represented as follows G = [N 1,…,N x ]  Mutation operator for system testing. The mutation operator, chooses a gene at random in an individual and replaces a node in that gene by another one: G = [N 1,…, N i,…, N x ]  G mut = [N 1,…, N imut,…, N x ]

52  Yves Le Traon 2002 Test enhancement: Genetic algorithm The global process of a genetic algorithm

53  Yves Le Traon 2002 Case study: unit testing p_date_time.e +make +is_equal(like current) +hash_code +set_date(x,y,z : integer) +set_time(x,y,z : integer) +set(a,b,c,x,y,z : integer) +is_valid +is_local +is_utc +timezone_bias +set_timezone_bias(integer) -local_timebias -internal_tz +to_iso, out +to_iso_long +to_rfc -add_iso_timezone(string, boolean) p_date.e +is_equal(like current) +hash_code +set_year(integer) +set_month(integer) +set_day(integer) +set(x,y,z : integer) +is_valid_date(x,y,z : integer) +is_valid +is_leap_year -max_day(x :integer) +to_iso, out +to_iso_long +to_rfc p_time.e +is_equal(like current) +hash_code +set_hour(integer) +set_minute(integer) +set_second(integer) +set(x,y,z : integer) +is_am +is_pm +to_iso, out +to_rfc p_date_const.e -Rfc_january -Rfc_february -Rfc_march -Rfc_april -Rfc_may -Rfc_june -Rfc_july -Rfc_august -Rfc_september -Rfc_october -Rfc_november -Rfc_december comparable.ehashable.e p_text_object.e Client Relation Inheritance Relation p_format.e +int_to-str_min(x,y : integer)

54  Yves Le Traon 2002 Case study: unit testing p_datep_date_timep_time # of generated mutants673199275 mutation score (%)5358

55  Yves Le Traon 2002 Case study: unit testing  Results for unit testing (Mutation rate : 10%)

56  Yves Le Traon 2002 Case study: system testing  a.NET component : C# parser ( 32 classes )

57  Yves Le Traon 2002 Score Case study: system testing  initial population of 12 individuals of size 4 (mutation score = 55%).  Mutation rate : 2%

58  Yves Le Traon 2002 Case study: system testing  Mutation rate : 10 %

59  Yves Le Traon 2002 Case study: system testing  Mutation rate : 20 % !!!

60  Yves Le Traon 2002 Case study: system testing  The GA have many parameters: difficult tuning  Results are not stable  The mutation plays a crucial role  Not a « classical » GA  Some technical reasons for these deceiving results  No memorization to guarantee a growth of the MS

61  Yves Le Traon 2002 A new model: bacteriological algorithms for test enhancement

62  Yves Le Traon 2002 The bacteriological approach  an adaptive approach  Test cases have to be adapted to a given «environment »  No cross-over  A new model taken from a biological analogy  The bacteriological approach

63  Yves Le Traon 2002 The bacteriological approach choose an initial set of bacteria compute the fitness value for each bacterium memorizationofthe best bacterium reproduction mutation on one or several bacteria several stopping criteria : x number of generations, a given fitness value reached … Bacteriological loop

64  Yves Le Traon 2002  Number of bacteria is constant (except the memorized ones)  The reproduction randomly choose bacteria with a probability proportional to its contribution to the new mutation score   The best bacterium is memorized (constrained by a given threshold)  Parameters of a bacteriological algorithm are  max size of a bacterium  size of the population

65  Yves Le Traon 2002 The bacteriological approach Generic UML model

66  Yves Le Traon 2002 Case study: unit testing  Results for unit testing

67  Yves Le Traon 2002 Case study: system testing  Initial mutation score = 55%.

68  Yves Le Traon 2002 Comparison  Performances  reduced tuning effort: less parameters (size of an individual, selection of individuals for reproduction) Algorithm# generation mutation score (%) # mutants executed Genetic20085480000 Bacteriologic309646375

69  Yves Le Traon 2002 A mixed-approach Tuning of the parameters

70  Yves Le Traon 2002 Tuning of models and clues for a mixed-approach  Fix the « size » of a bacterium  Study of the C# parser  Size of a bacterium = #syntactic nodes

71  Yves Le Traon 2002 Tuning of models and clues for a mixed-approach

72  Yves Le Traon 2002 Tuning of models and clues for a mixed-approach Top mutation score trend curve

73  Yves Le Traon 2002 Tuning of models and clues for a mixed-approach Mixed-Approach  Loooking for an intermediate solution between ‘pure’ GAs and bacteriological algorithms.  From no memorization to a systematic memorization  Trade-off between  number of test cases = number of memorized bacteria  Convergence speed = number of generations

74  Yves Le Traon 2002 Clues for a mixed-approach Let B be bacterium and threshold_value be the memorization threshold if fitness_value(B)> threshold_value then memorize B The category of the algorithm depends on the threshold value: if threshold_value = 100 then “pure ” genetic if threshold_value = 0 then “pure” bacteriological if 0 < threshold_value < 100 then mixed-approach

75  Yves Le Traon 2002 Clues for a mixed-approach Convergence speed

76  Yves Le Traon 2002 Clues for a mixed-approach # of test cases set = # memorized Bacteria

77  Yves Le Traon 2002 Clues for a mixed-approach A slice for the mixed-approach Bacteriological approach Lowest convergence speed for the mixed-approach Test cases set reduced from 10 to 7 But many parameters must be tuned => bact. still better

78  Yves Le Traon 2002  Method to build trustable components  Automated test improvement  Gas not adapted  BAs better and easier to calibrate  Mixed-approach benefit not obvious Conclusion


Download ppt " Yves Le Traon 2002 Building Trust into OO Components using a Genetic Analogy Yves Le Traon and Benoit Baudry"

Similar presentations


Ads by Google