Download presentation
Presentation is loading. Please wait.
Published byJana Covin Modified over 9 years ago
1
The IUPAC water vapour database Jonathan Tennyson HITRAN meeting Department of Physics and Astronomy Harvard University College London June 2008
2
A Database of Water Transitions from Experiment and Theory Members: Jonathan Tennyson (chair), P.F. Bernath, A. Campargue, M.R. Carleer, A.G. Császár, R.R. Gamache, J. Hodges, (A. Jenouvrier), O. Naumenko, O.L. Polyansky, L.S. Rothman, R.A. Toth, A.C. Vandaele, N.F. Zobov L Brown, L Daumont Objective: Develop a compilation of experimental and theoretical line positions, energy levels, intensities, and line-shape parameters for water vapour and all of its major isotopologues Establish a database structure that retains and enables access to all critically evaluated data
3
IUPAC Task group Database (W@DIS) in parts: 1.Energy levels and frequencies (MARVEL): progress update 2.Line intensities is best way forward ab initio? 3.Pressure dependence Gamache et al 4.Archive: experimental data and calculated linelists. Alex Fazliev Will use: multiple data sources for each region back filled by theory
4
“Water continuum”: Anomalous Features 6.4*10 19 molecules cm -3 T = 95 C All fitting parameters (except water database) identical for both cases. ‘Continuum Feature’ (HITRAN) No feature (UCL) A.J.L. Shillings and R.L. Jones, University of Cambridge
5
Iodine Measurements Retrieved I 2 and NO 2 concentrations depend on the water database employed. Disagreement for I 2 up to ± 20 ppt, (which is chemically significant), NO 2 disagreement up to ± 0.65 ppb (UCL 08 gives better agreement with independent chemiluminescence NO 2 measurements). Measurements performed during RHaMBLe campaign, Roscoff, France, 2006. Iodine released by certain seaweeds when under stress (low tide). Emitted I 2 leads to significant aerosol production and has an impact on ozone chemistry. Need accurate I 2 measurements to better understand detailed mechanisms involved. A.J.L. Shillings, S.M. Ball and R.L. Jones, University of Cambridge
6
MARVEL: inverse, experimental rovibrational energy levels Measured Active Rotational-Vibrational Energy Levels Rotational-Vibrational Energy Levels T. Furtenbacher, A. G. Császár, J. Tennyson, J. Mol. Spectrosc. 245, 115 (2007) T. Furtenbacher, A. G. Császár, J. Quant. Spectr. Rad. Transfer 109, 1234 (2008) Based on: all 1. X-matrix protocol of Flaud et al (1976) applied to all spectra 2. Relatively robust error method of Watson
7
EiEi EjEj Assignment i,j ij..... +1...... -1........ = X × E ×.............. Solve for E (least-squares with experimental uncertainties of the ij ) obtain experimentally derived term values E i, E j,.... Observed transition wavenumbers ij with assignments and uncertainties The ij can be determined by term values E i, E j,.... =
8
Spectroscopic networks of water Water (except for HDO) has two main SNs: (K a + K c + n 3 ) is even (K a + K c + n 3 ) is odd (para)(ortho) „magic number”
9
MARVEL steps (1)Collect, validate, and compile all available measured transitions, including their systematic and unique assignments and uncertainties, into a single database. (2)Based on the given database of assigned transitions, determine those energy levels of the given species which belong to a particular spectroscopic network (SN). (3) Cleansing of the database (misassignments, mislabelings). (4)Within a given SN, set up a vector containing all the experimentally measured transitions selected, another one comprising the requested measured energy levels, and a design matrix which describes the relation between the transitions and the energy levels. (5)Solve the resulting set of linear equations corresponding to the chosen set of vectors and the inversion matrix many times (robust reweighting). During solution of the set of linear equations uncertainties in the measured transitions can be incorporated which result in uncertainties of the energy levels determined.
10
Input database 0.300772260.76590007 4 30007 4 4 83Johns.1 0.315587434.5621000 10 5 5000 10 5 6 83Johns.2 0.317235782.23110003 2 10004 1 4 83Johns.3 0.348271380.19980002 2 00002 2 1 83Johns.4 0.757015563.09690007 1 70006 2 4 83Johns.5 0.7685723250.73260005 3 20005 3 3 83Johns.6 0.8064727213.9194000 11 5 6000 11 5 7 83Johns.7 0.8723551050.9990008 4 40008 4 5 83Johns.8 1.2617320051.53180004 3 10005 2 4 83Johns.9 1.7012197440.6660003 2 10003 2 2 83Johns.10 2.1614593771.36530009 4 50009 4 6 83Johns.11 2.2178446021.06560006 3 30006 3 4 83Johns.12 … Java-based test facility: http://theop11.chem.elte.hu/marvel/MARVEL_JAVACODE.html Freq/cm -1 unc./10 -6 cm -1 assignment unique label other info
11
[UC = under construction ] Go up HOME Home H 2 16 O (UC) H 2 17 O H 2 18 O (UC) HD 16 O HD 17 O HD 18 O D 2 16 O (UC) D 2 17 O (UC) D 2 18 O (UC) MARVEL levels and transitions UPLOAD (UC) H 2 16 O Data Manager : Jonathan Tennyson Number of MARVEL levels : Number of measured transitions : H 2 17 O Data Manager : Tibor Furtenbacher & Attila G. Császár Number of MARVEL levels : 2 736 Number of measured transitions : 8 424 Details >>> H 2 18 O Data Manager : Nikolai Zobov Number of MARVEL levels : Number of measured transitions : HD 16 O Data Manager : Boris Voronin Number of MARVEL levels : Number of measured transitions : Details >>> HD 17 O Data Manager : Alain Campargue Number of MARVEL levels : Number of measured transitions : Details >>> HD 18 O Data Manager : Alain Campargue Number of MARVEL levels : Number of measured transitions : Details >>> D 2 16 O Data Manager : Olga Naumenko Number of MARVEL levels : Number of measured transitions : Marvel web page: http://chaos.chem.elte.hu/marvel/
12
Observed Transitions of H 2 17 O Interval (cm -1 )ReferencesDownload 1.0 - 170J. Steenbeckeliers, CRAS Paris B273 (1971) 471 2.0 - 170F.C. De Lucia, J. Mol. Spectrosc. 56 (1975) 138 - 145PDF 3.0 - 177 F. Matsushima, H. Nagase, T. Nakauchi, H. Odashima, and K. Takagi, J. Mol. Spectrosc. 193 (1999) 217 – 223 PDF 4.177 - 600J. Kauppinen and E. Kyro, J. Mol. Spectrosc. 84 (1980) 405 - 423PDF 5.1315 - 1986G. Guelachvili, J. Opt. Soc. Am. 73 (1983) 137 - 150PDF 6.500 - 7782SISAM database: http://mark4sun.jpl.nasa.gov/http://mark4sun.jpl.nasa.gov/ 7.8564 - 9332 A.-W. Liu, S.-M. Hu, C. Camy-Peyret, J.-Y. Mandin, O. Naumenko, and B. Voronin, J. Mol. Spectry. 237 (2006) 53 - 62 PDF 8.4206 - 6600 A. Jenouvrier, L. Daumont, L. Regalia-Jarlot, V. G. Tyuterev, M. Carleer, A. C. Vandaele, S. Mikhailenko, S. Fally, J. Quant. Spectrosc. Rad. Transfer 105 (2007) 326 - 355 PDF 9.6170 - 6747 P. Macko, D. Romanini, S. N. Mikhailenko, O. V. Naumenko, S. Kassi, A. Jenouvrier, Vl. G. Tyuterev, and A. Campargue, J. Mol. Spectry. 227 (2004) 90 - 108 PDF 10. 9711 - 10883 C. Camy-Peyret, J.-M. Flaud, J.-Y. Mandin, A. Bykov, O. Naumenko, L. Sinitsa,and B. Voronin, J. Quant. Spectrosc. Rad. Transfer 61 (1999) 795 - 812 PDF 11.11365 - 14377 M. Tanaka, O. Naumenko, J. W. Brault, and J. Tennyson, J. Mol. Spectrosc. 234 (2005) 1 - 9 PDF 12. 16570 - 17125 O. Naumenko, M. Sneep, M. Tanaka, S.V. Shirin, W. Ubachs, and J. Tennyson, J. Mol. Spectrosc. 237 (2006) 63-69 PDF Observed Transitions of H 2 17 O
13
n1n2n3n1n2n3 MARVELNo. of levels 0000.000000194 0101591.325708(48)153 0203144.980414(31)63 1003653.142263 (21)106 0013748.318070(11)143 030[4657.123]22 1105227.705603 (46)6868 0115320.260507(3)148 040[6121.552]21 1206764.725603(547)63 0216857.272709(32)89 2007193.246623(20)83 1017238.713600(185)102 0027431.076115(1449)28 0501 1303 03110 21034 1118792.544310(925)108 0601 0128982.869215(966)55 04113 22012 12110311.202510(926)75 0221 30065 20110598.475610(926)102 10853.505315(966)53 00346 13111792.827010(6018)31 31028 21112132.992610(926)87 11225 01312541.225510(926)39 1411 0421 3203 22113631.499810(1019)53 40029 07113808.273310(926)2 30113812.158110(926)75 20214 10314296.279510(370)37 34013 2416 H 2 17 O vibrational energy levels
14
MARVELlous water H 2 16 OH 2 17 OH 2 18 OHD 16 O No. of transitions collected~250 0008 46325 36750 674 Maximum J42172030 Highest VBO (cm -1 )~3700016 87616 85522 455 No. of HITRAN transitions6 1209 5319 627 Concordant transitions4 5868 9186 876 Absent HITRAN transitions1 91060725 325 Characteristics of MARVEL energy levels: highly accurate highly incomplete as we move up on the energy ladder
15
Pure rotational energy levels for water T. Furtenbacher, A. G. Császár, J. Quant. Spectr. Rad. Transfer 109, 1234 (2008) J Ka KcJ Ka Kc H 2 16 OH 2 17 OH 2 18 O CVRQDFIS3MARVELCVRQDFIS3MARVELCVRQDFIS3MARVEL 1 0 123,795 23,79435023,774 23,77351023,756 23,754902 1 1 137,13837,13937,13712536,93236,93336,93111036,74936,75036,748650 1 1 042,37242,37342,37173542,188 42,18693442,024 42,023431 2 0 270,094 70,09081570,07770,00870,00466869,930 69,927441 2 1 279,49979,50079,49637979,23079,23179,22733678,99178,99278,988652 2 1 195,17895,17995,17593994,97394,97494,97054094,791 94,788651 2 2 1134,903134,906134,90163134,14 134,14526133,478133,480133,47580 2 2 0136,165136,168136,16392135,43 135,43118134,785134,788134,78312 3 0 3136,767136,768136,76165136,54 136,53761136,342 136,33666 3 1 3142,284142,285142,27848141,90 141,90240141,573141,574141,56806 3 1 2173,371173,372173,365802173, 115 173,116173,11008 5 172,888172,889172,88291 0 3 2 2206,306206,309206,301428205, 486 205,48 9 205,48181 9 204,760204,763204,75591 2 3 2 1212,161212,163212,156359211, 440 211,443211,43577 5 210,804210,806210,79927 7 3 3 1285,222285,227285,219345283, 565 283,57 0 283,56165 9 282,099282,103282,09458 3 3 3 0285,422285,426285,418571283, 771 283,77 6 283,76775 4 282,311282,316282,30708 4
16
Energies/frequencies Have well developed protocol H 2 17 O, H 2 18 O and HD 16 O (nearly) complete H 2 16 O underway: all available data input, much missing Labeling remains an issue
17
Required to better than 1% for remote sensing Very few laboratory determinations this accurate Problems with consistency between measurements Issues with dynamic range of any measurements New ab initio CVR dipole accurate to about 3% (hope to do better soon ) Intensities:
18
Lodi & Tennyson, JQSRT, 109, 1219 (2008). Intensities of pure rotational transitions Calculations using CVR dipole surface of Lodi et al JCP, 128, 0440204 (2008)
19
Lodi & Tennyson, JQSRT, 109, 1219 (2008).
24
CVR calc = Lodi & Tennyson, unpublished. DLR = Coudert, Wagner et al (JMS in press) Bending fundamental: 1250 – 1750 cm -1
25
Analysis of allowed and forbidden rotational transitions using: (Lodi & Tennyson, JQSRT, 109, 1219 (2008). ). 555 allowed, 846 forbidden lines > 10(-28) molecule/cm at 296 K 50 of which not in HITRAN or JPL Good general agreement with HITRAN for these Significant systematic errors identified in JPL database Subsequent analysis of bending fundamental region suggests problem with strong lines in HITRAN Use purely ab initio calculated intensities to solve these problems? (Resonances?!) Intensities: “UCL linelists” Multiple sources for single region Back filled for missing transitions with theory Will be IUPAC convention, HITRAN too?
26
A Database of Water Transitions from Experiment and Theory Members: Jonathan Tennyson (chair), P.F. Bernath, A. Campargue, M.R. Carleer, A.G. Császár, R.R. Gamache, J. Hodges, A. Jenouvrier, O. Naumenko, O.L. Polyansky, L.S. Rothman, R.A. Toth, A.C. Vandaele, N.F. Zobov, L. Brown Also: L Daumont, AZ Fazliev, T Furtenbacher, IF Gourdon, SN Mikhailenko, SV Shirin, BA Voronin, S Voronina, A Al Derzi UCL intensity work: L Lodi, M Barber, RN Tolchenov
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.