Presentation is loading. Please wait.

Presentation is loading. Please wait.

核磁共振光譜與影像導論 Introduction to NMR Spectroscopy and Imaging Lecture 09 Applications of Solid State NMR (Spring Term, 2011) Department of Chemistry National.

Similar presentations


Presentation on theme: "核磁共振光譜與影像導論 Introduction to NMR Spectroscopy and Imaging Lecture 09 Applications of Solid State NMR (Spring Term, 2011) Department of Chemistry National."— Presentation transcript:

1 核磁共振光譜與影像導論 Introduction to NMR Spectroscopy and Imaging Lecture 09 Applications of Solid State NMR (Spring Term, 2011) Department of Chemistry National Sun Yat-sen University

2 Applications of Solid State NMR
Polymers Glasses Porous materials Liquid crystals

3 Schematic of a typical semicrystalline linear polymer

4 Stereochemical issue in substituted polymers

5 Signature of stereoregularity in the solid state spectrum

6 Static 2D exchange spectrum for polyethyleneoxide (PEO)
Experiment Simulation

7 3D static 13C exchange spectra of polyethyleneoxide polyvinylacetate

8 Applications Polymers Glasses Porous materials Liquid crystals

9 Static whole-echo 207Pb NMR spectra in Pb-silicate glasses
mol % PbO 66 50.5 31 Linewidth ~ T —> signals of 6 experiments summed up ppm

10 Sodium silicate glasses
Static 17O NMR spectra bridging (BO) and non-bridging (NBO) oxygens Na2Si2O5 Na2Si3O7 Na2Si4O9 NBO BO ppm

11 Structure of glasses (I)
NBO BO

12 29Si NMR spectra for sodium silicate glasses
static MAS Q4 mole % Na2O 34 37 41 Q3 Q2 Q3 + Q2 ppm

13 Structure of glasses (II)
Q4 Q2 Q3 Q1

14 1H-29Si CPMAS intensity as a function of contact time
Q2 Q3 Q4 Different sites in a Na2Si4O9 glass with 9.1 wt% H2O contact time (ms)

15 Efficiency for (1H 29Si)-CP
Acquisition 29Si CP decoupling 1H t

16 29Si MAS NMR spectra for a CaSi2O5 glass
SiO4 SiO SiO6 x 8 glass crystal quenched from a 10 GPa pressure melt isotopically enriched high pressure phase normal isotopes ppm

17 11B MAS NMR spectra for a sodium borate glass
(with 5 mole% Na2O) data fit slow cooled fast cooled R BO4 NR ppm data fit R BO4 NR

18 31P MAS NMR spectra for sodium phosphate glasses
mol % Na2O 56 53 40 30 15 5 Q1 Q2 Q3 ppm

19 31P double-quantum NMR spectrum
-60 2-2 Double-quantum dimension (ppm) 1-2 2-1 1-1 0 -30 Single-quantum dimension

20 1H MAS NMR spectrum for a GeO2-doped silica glass
loaded with H2 and UV-irradiated after subtraction of intense back- ground signal SiOH + GeOH GeH 9.4 T, 10 kHz spinning ppm Sample contains ~8 ´1019 H atoms/cm3 (corresponding to about 500 ppm of H2O)

21 17O 3QMAS NMR spectrum for a glass on the NaAlO2-SiO2 join with Si/Al = 0.7
-50 50 100 MAS dimension (ppm) Al-O-Al Si-O-Al Isotropic dimension (ppm)

22 17O 3QMAS NMR spectrum for a borosilicate
-100 -50 50 100 B-O-B MAS dimension (ppm) Si-O-Si Si-O-B Isotropic dimension (ppm)

23 11B-{27Al} CP-HETCOR NMR spectrum
BO4 BO3 -80 80 AlO6 AlO5 AlO4 ppm

24 Applications Polymers Glasses Porous materials Liquid crystals

25 Porous materials Zeolite A Sodalite

26 Porous materials Faujasite Cancrinite

27 Porous materials Zeolite ZK-5 Zeolite Rho

28 Zeolite framework projections
AlPO4-5 along [001] AlPO4-11 along [100] VPI-5 along [001]

29 2 High-resolution 29Si MAS NMR spectra of synthetic Na-X and Na-Y zeolites (Si/Al) = 1.03 1.19 1.35 1.59 1.67 1.87 3 2.00 2.35 2.56 2.61 2.75 1 4 4 Si(nAl) lines n = 3 2 1

30 Possible ordering schemes for zeolite Y
Si/Al = 1.67 Intensity ratios: Si(4Al):Si(3Al):Si(2Al):Si(1Al):Si(0Al) Si Al

31 29Si MAS NMR spectrum of highly siliceous mordenite
3 2 29Si MAS NMR spectrum of highly siliceous mordenite 1 Intensities ppm

32 Mordenite structure along [001]
T-site No. per unit cell Neighbouring sites Mean T-O-T bond angle T1 16 T1, T1, T2, T ° T2 16 T1, T2, T2, T ° T3 8 T1, T1, T3, T ° T4 8 T2, T2, T3, T °

33 Mordenite structure along [001]
T1/T3/T2+T4 : 3 cross peaks T1/T4/T2+T3 : 2 cross peaks T2/T3/T1+T4 : 2 cross peaks T2/T4/T1+T3 : 3 cross peaks T-site No. per unit cell Neighbouring sites Mean T-O-T bond angle T1 16 T1, T1, T2, T ° T2 16 T1, T2, T2, T ° T3 8 T1, T1, T3, T ° T4 8 T2, T2, T3, T °

34 29Si MAS NMR spectrum of highly siliceous mordenite
T2 + T4 T1 29Si MAS NMR spectrum of highly siliceous mordenite T3 J-scaled COSY spectrum T1/T3/T2+T4 : 3 cross peaks T1/T4/T2+T3 : 2 cross peaks T2/T3/T1+T4 : 2 cross peaks T2/T4/T1+T3 : 3 cross peaks ppm

35 29Si MAS NMR spectra of ultrastabilized and hydrothermally realuminated zeolites
1 Si/Al = 2.56 3 ppm

36 Chemical reactions in zeolites
{C} + H2O CO + H2 (water gas reaction)

37 Chemical reactions in zeolites
{C} + H2O CO + H2 (water gas reaction) ……. + x O2 (n-x) CO + n H2 + x CO2 (water gas shift)

38 Chemical reactions in zeolites
{C} + H2O CO + H2 (water gas reaction) ……. + x O2 (n-x) CO + n H2 + x CO2 (water gas shift) CO H2 CH3OH (conversion of synthesis gas) catalyst

39 Chemical reactions in zeolites
{C} + H2O CO + H2 (water gas reaction) ……. + x O2 (n-x) CO + n H2 + x CO2 (water gas shift) CO H2 CH3OH (conversion of synthesis gas) CH3OH CH3OH + CH3OCH3 catalyst Zeolites 150 °C

40 Chemical reactions in zeolites
{C} + H2O CO + H2 (water gas reaction) ……. + x O2 (n-x) CO + n H2 + x CO2 (water gas shift) CO H2 CH3OH (conversion of synthesis gas) CH3OH CH3OH + CH3OCH3 …….. complex mixture of hydrocarbons catalyst Zeolites 150 °C Zeolites 300 °C

41 Chemical reactions in zeolites
{C} + H2O CO + H2 (water gas reaction) ……. + x O2 (n-x) CO + n H2 + x CO2 (water gas shift) CO H2 CH3OH (conversion of synthesis gas) CH3OH CH3OH + CH3OCH3 …….. complex mixture of hydrocarbons catalyst Zeolites 150 °C Zeolites 300 °C

42 13C MAS NMR spectrum of H-ZSM-5 with 50 torr of adsorbed MeOH heated to 300 °C for 35 mins
ppm

43 13C MAS NMR spectrum of H-ZSM-5 with 50 torr of adsorbed MeOH heated to 300 °C for 35 mins
scalar coupling 1JCH = 125 Hz a quintet with ratio 1:4:6:4:1 is expected for methane ppm

44 Heteronuclear 2D J-resolved 13C MAS NMR spectrum
300 200 100 0 Hz -100 -200 -300 ppm

45 13C NMR spin diffusion spectrum of products of methanol conversion over zeolite ZSM-5
ppm

46 13C MAS NMR spectrum of H-ZSM-5 with 50 torr of adsorbed MeOH heated to 300 °C for 35 mins
Methane Ethane Propane Cyclopropane n-Butane Isobutane (n-Pentane) Isopentane n-Hexane n-Heptane ppm

47 Methylated aromatic products
* CO * * * * ppm

48 129Xe NMR as a sensitive tool for materials
0: reference S: surface collisions Xe: Xe-Xe collisions E: electric field effect M: paramagnetic species

49 129Xe as a sensitive probe for various zeolites
ZK4 ZSM-5 1021 NaY ZSM-11 K - L Xe atoms /g omega 1020 ppm

50 Applications Polymers Glasses Porous materials Liquid crystals

51 Graphitic nanowires Hexa-peri-hexabenzocoronene (HBC)

52 HBC monolayer on HOPG

53 Phase transitions of alkyl substituted HBC

54 Temperature dependence of the one dimensional charge carrier mobility

55 Liquid crystalline (dichotic) behaviour of alkyl substituted HBC‘s
R = C12H25 Hexadodecyl-hexa-peri-hexabenzocoronene (HBC-C12)

56 Charge carrier mobility in HHTT

57 1H DQ MAS NMR spectra of HBC-C12
a-deuterated fully protonated

58

59 Proposed stacking model based on solid state NMR

60 „Graphitic“ stacking

61 Spinning side band simulation in the DQ time domain
For an isolated spin pair, using N cycles of the recoupling sequence for both the excitation and reconversion of DQCs, the DQ time domain signal is given by: b and g are Euler angles relating the PAF of the diploar coupling tensor to the rotor fixed reference frame with -> distance information in a rigid system, or indication of mobility: Ref.: Graf et al. J. Chem. Phys. 1997, 106, 885

62 Homonuclear correlation between I = 1/2 spins

63 aromatic protons at 8.3 ppm (crystalline phase)
DQ spinning side band patterns wR = 35 kHz aromatic protons at 6.2 ppm (LC phase) wR = 10 kHz aliphatic protons at 1.2 ppm (crystalline phase) wR = 35 kHz fitted dipolar coupling constants

64 Effect of additional phenyl spacers
R = -C12H25 or -C6H4-C12H25

65

66

67 Space filling model for HBC-PhC1

68 X-ray diffraction patterns of the mesophases


Download ppt "核磁共振光譜與影像導論 Introduction to NMR Spectroscopy and Imaging Lecture 09 Applications of Solid State NMR (Spring Term, 2011) Department of Chemistry National."

Similar presentations


Ads by Google