Presentation is loading. Please wait.

Presentation is loading. Please wait.

DIMACS Streaming Data Working Group II On the Optimality of the Holistic Twig Join Algorithm Speaker: Byron Choi (Upenn) Joint Work with Susan Davidson.

Similar presentations


Presentation on theme: "DIMACS Streaming Data Working Group II On the Optimality of the Holistic Twig Join Algorithm Speaker: Byron Choi (Upenn) Joint Work with Susan Davidson."— Presentation transcript:

1 DIMACS Streaming Data Working Group II On the Optimality of the Holistic Twig Join Algorithm Speaker: Byron Choi (Upenn) Joint Work with Susan Davidson (Upenn), Malika Mahoui (Upenn) and Derick Wood (HKUST)

2 A Scenario XML Doc. Server Memory Small Devices Memory is shared by many Concurrent apps. Limited computing resources Streams of elements Picking up useful elements on the fly

3 Background The Model, Data Representation and Assumptions

4 The Model Data Streaming Model Spend constant time to process each element An element in a stream is either discarded or stored in the main memory once it is processed See the element in streams only once

5 Node Representation 4-ary tuple: Complexity of Desc, Child, Ances, Parent: O(1) Desc(n1, n2) = true if n1.preorder n2.postorder Child(n1, n2) = true if n1.preorder n2.postorder ^ n1.depth + 1 = n2.depth

6 Example Document a1 a2 b1 b2c1 c2 (1, 9, 1, A) (2, 7, 2, B) (3, 6, 3, A) (4, 4, 4, B)(5, 5, 4, C) (8, 8, 2, C)

7 Twig Queries Syntax: Step ::= / | // NodeTest ::= symbol Path ::= Step NodeTest | Step NodeTest Path Twig ::= Path | Path (Twig, Twig, …, Twig) Example // A (//B, //C) In English: Want to find the A nodes which has a B descendent and a C descendent A BC

8 Twig Join Algorithms Containment Join [Jiang et al.] Decompose a twig query into a set of steps Apply relational join algor. to join the nodes of each step Use customized traditional indexes and estimation methods [SIGMOD03] Path Join [Zhang et al.] Decompose a twig query into a set of paths Apply relational join algor. to join the nodes of each path Holistic Twig Join [Bruno et al.] Evaluate the twig query as a whole

9 Twig Join Algorithms (cont’) The first two approaches may compute large intermediate results and not suitable for data streaming In this talk we will focus on the third approach. The TwigStack Algor. (Bruno et al. SIGMOD 02)

10 The TwigStack Algor. (Overview) Associate a stream to each NodeTest The nodes in the stream satisfy the NodeTest Asymptotically optimal among the algorithms that read the entire input Scan the streams only once Spend constant memory only on the nodes that are useful, i.e. participate in at least one solution Guarantee the optimality when the query contains descendent edges only. Suboptimal when the query contains some child edges Memory is spent on possibly useless nodes.

11 Problem Statement Given a twig query and the associated streams, is it possible to find all solutions … By using a single forward scan of the streams By paying constant memory only to the useful nodes By spending constant time on processing each node in the streams

12 Main Results So Far Assume the data streaming model… There is no optimal holistic twig join algorithm – Theorem 1. The evaluation of the twig queries is not memory bounded – Theorem 1. By relaxing some restrictions on the data streaming model, we showed… The lower bounds of such relaxed models are still quite high – Theorem 2 and Theorem 3.

13 Outline TwigStack By Examples Offline Sorting Multiple Scans Discussion Conclusion

14 TwigStack By Examples Query: //A (//B, //C) Document: Streams: TA = [a1, a2], TB = [b1, b2], TC = [c1, c2] pA, pB, pC are the anchor pointing to the “top” of the streams Useful nodes are stored in the main memory and can be read later a1 a2 b1 b2c1 c2

15 TwigStack By Examples Step 0 pA -> a1, pB -> b1, pC -> c1 a1 is useful, TA is advanced, pA->a2 Step 1 b1 is useful, TB is advanced, pB->b2 a1 a2 b1 b2c1 c2 a1 a2 b1 b2c1 c2 a1

16 TwigStack By Examples Step 2 a2 is useful, TA is advanced, pA -> null Step 3 b2 is useful, TB is advanced, pB -> null a1 a2 b1 b2c1 c2 a1b1 a1 a2 b1 b2c1 c2 a1b1 a2

17 TwigStack By Examples Step 4 c1 is useful, TC is advanced, pC -> c2 Step 5 Printing Step 6 c2 is useful, TC is advanced, pC-> null a1 a2 b1 b2c1 c2 a1b1 a2b2 a1 a2 b1 b2 c2 a1b1

18 TwigStack By Examples Query: //A (/B, /C) Document: Streams: TA = [a1, a2], TB = [b1, b2], TC = [c1, c2] a1 a2 b1 b2c1 c2

19 TwigStack By Examples Computation 1 pA -> a1, pB -> b1, pC -> c1 TA is advanced, pA->a2, TB is advanced, pB -> b2 a2 is useful (a1 is discarded) Computation 2 TC is advanced, pC->c2 a1 is useful a2 is useless because c1 is discarded a1 a2 b1 b2c1 c2 a1 a2 b1 b2c1

20 TwigStack By Examples a1 b1c4 a1 b2c3 a1 b3c2 a1 b4c1 The Extreme Case O(stream size)

21 TwigStack Pseudo Code We’ve only walked through the red boxes

22 Twig Queries over Streams Theorem 1 There is no optimal holistic twig join algorithms, no matter how the nodes are sorted. Memory must be spent on possibly useless nodes Given arbitrary streams, memory requirement of exact algorithms is unbounded.

23 Proof of Theorem 1 (Sketch) Fix a document Issue a few queries: //A//B, /A (/A, /A) and /A/A Optimality implies certain constraints on the streams No single stream can satisfy all the constraints

24 Proof of Theorem 1 (cont’) Reduce a twig query to a SPJ query the twig query is memory bounded iff the SPJ query is memory bounded. Babcock et al PODS 02

25 Outline TwigStack By Examples Offline Sorting Multiple Scans Discussion Conclusion

26 Variation 1: Offline Sorting Pre-compute some intermediate results and collect the results in a scan Allow offline sorting on the nodes and keep all the necessary sorted nodes Allow the algorithm to scan the nodes in the correct orderings

27 Motivation The anchors are performing a depth first transversal But why? How about an ordering in which recursions are removed? a1 a2 b1 b2c1 c2 a1 a2 b1b2c1 c2

28 The Lower Bound The number of necessary sorting performed offline is high Data redundancy m is the number of structurally recursive label in the doc. DTD. d is the doc. depth. The lower bound is m We identify a restricted case that DTDs help to lower the lower bound d

29 Variation 2: Multiple Scans Massive storage (tapes, disks) naturally produces a stream of items. Sequential scans is a vital requirement of such storage Can only allow a small number of scans due to the high volume of data

30 The Lower Bound Allow P scans on the data streams. The lower bound of P is high d where d is the doc. depth and t is the number of simple child-edge query in a twig query t

31 Discussion Bruno et al. assigns memory to possible useless nodes and illustrates that such computation model is practical by experiments No work on approximating the twig queries with provable guarantees Constraints expressed in DTDs Our work assumes certain representation of the node: ancestor, descendent, parent, child relationship can be determined in O(1)

32 Conclusion The evaluation of twig queries in data streaming context is tricky. It is not memory bounded. Optimal memory constraint cannot be satisfied in a pass of streams. Need to look for other solutions.


Download ppt "DIMACS Streaming Data Working Group II On the Optimality of the Holistic Twig Join Algorithm Speaker: Byron Choi (Upenn) Joint Work with Susan Davidson."

Similar presentations


Ads by Google