Download presentation
Presentation is loading. Please wait.
Published byJamie Claywell Modified over 9 years ago
1
1 Decomposition of Message Sequence Charts Loïc Hélouët, Pierre Le Maigat SAM 2000
2
2 Outline n Motivations n bMSC Decomposition n Normalisation of HMSCs n Conclusion
3
3 Motivations Time Analysis & Granularity M1 M2 M1’ M2 M1’’ No finite time model: Reduce the language or Consider bMSCs as the granularity of the method
4
4 Motivations Equivalence C c AB AB B C m2 m3 m1 A B C c m2 m3 A B C c m1 A B C m2 m3
5
5 bMSC Decomposition bMSC Independance I(M1) I(M2)= M1;M2 M2;M1 M1 M2 M1 M2 m1 AB bMSC M1 CD bMSC M2 M1 M2 m2 M2 M1 Decomposition?
6
6 bMSC Decomposition How to Split a bMSC ? A B m1 A B Preserve messages A B m1 Preserve coregions A B m1 A B
7
7 bMSC Decomposition AB m1 m2 Message Crossing can not be separated AB m1 m2 C But may involve all instances ! m3
8
8 bMSC Decomposition Cutting points A B m1 m2 C a1 a2
9
9 bMSC Decomposition Cuts A B m1 m2 C m3 C1 C2 C3
10
10 bMSC Decomposition Valid Cuts A B m1 m2 C m3 C1 C2 C3
11
11 bMSC Decomposition Basic patterns Sets of events that are not partitionned by valid cuts A B m1 m2 C m3 a B1 B2 B3 B1 B2 B3
12
12 bMSC Decomposition G(M) AB m1 m2 G(M) = Order relation on events + Cycles between pairs of events that must not be separated
13
13 bMSC Decomposition Basic patterns are the strongly connected components of G(M) Use Tarjan ’s algorithm
14
14 bMSC Decomposition Exemple A B m1 m2 C m3 a m4 m5 b
15
15 bMSC Decomposition Exemple m1 m2 m3 a m4 m5 b
16
16 bMSC Decomposition Exemple A a B m1 C A B m2 b B C m3 m4 A B m5 bMSC M1 bMSC M2 bMSC M3 bMSC M4 bMSC M5 M1M2 M3 M4 M5
17
17 Normalisation of HMSCs M1 M2 M5 M6 M7 M3 M4 HMSC = bMSC Automata Generate local sequencing of bMSC Decomposition ? Normal form ?
18
18 Normalisation of HMSCs M1M2 M1M3 M2 M3 M1 Factorisation M2M3 Lift Up M1 M1M3 M2 If I(M1) I(m3)=
19
19 Normalisation of HMSCs Caution when factorizing bMSCs! M2M3 M2M4 M3 M4 M2 M1 M3 M4 M2 M1 Preserve cycles
20
20 Normalisation of HMSCs Caution when Shifting bMSCs! M3 M2 M1 M3 M2 M1 M2 Even if I(M1) I(m3)=
21
21 Normalisation of HMSCs Let H be a HMSC Algorithm Split all bMSCs of H into Basic Patterns Repeat Factorize (H) Lift(H) Until H n = Hn+1
22
22 Normalisation of HMSCs M1 M2 M5 M6 M7 M1 1 M2 M5 2 M6 M7 M3 M4 M1 2 M1 3 M4 M3 1 M3 2 M5 1 Factorize Lift UP
23
23 Conclusion n for analysis (time, concurrency,…) n as an equivalence Decomposition: http://www.irisa.fr/pampa/perso/helouet/LHpage.html
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.