Presentation is loading. Please wait.

Presentation is loading. Please wait.

Passive Sampling for PCB in Air Takeshi Nakano (Osaka University)

Similar presentations


Presentation on theme: "Passive Sampling for PCB in Air Takeshi Nakano (Osaka University)"— Presentation transcript:

1 Passive Sampling for PCB in Air Takeshi Nakano (Osaka University)

2 【はじめに】 樹皮中の PCB 濃度は汚染源との距離に応じて変化し、 - 汚染源近傍で PCB の樹皮 / 大気比率は高く、 - 1960-70 の大気中 PCB 濃度の高い時期から PCB を取込んでいる。 樹皮が大気と比較して高塩素化 PCB が高くなっており、 高塩素の異性体をより蓄積しやすいと思われる。 - PCB 異性体の蒸気圧は樹皮 PCB 濃度のよい指標であるが、 - 疎水性は樹皮 PCB 濃度のよい指標ではなかった。 多くの研究者が PCB や POPs の大気モニタリングにおいて、 パッシブサンプラーをグローバルモニタリングのための検討を 行っている。

3 -Passive sampling using SPMD -SPMD : Semipermeable Membrane Device -Passive sampling (rates R value) -PCB, PCN : 3-5m 3 /day (Shoeib et al) -PUF : Poly Urethane Foam -PBDE-47, PCB-45 : 0.57-1.95 m 3 /day (Hazrati et al) -PCB-101, PCB-180: 2-8.3 m 3 /day (Shoeib et al) [Same period] Active air sampling (AAS) and Passive air sampling (PAS) Estimate sampling rate (m 3 /day) of PAS using PUF

4 【方法】 パッシブエアサンプラー (PAS) は、風雨の影響を除去しボ ウルを二つ重ねた UFO 型の容器にポリウレタンフォーム プラグ( PUF: 直径 85mm 高さ 50mm) を装着し、 2 週間から 4 週間程度の期間、室内で静的な吸着大気捕集を実施し た。並行してアクティブエアサンプラー (AAS) として PS- Air を 2 段直列につないでポンプで室内大気を捕集した。 大気捕集中の温度、湿度の測定は、温湿度データロガー ( TR-72Ui 、 T&D 社)で連続モニタリングした。サンプリ ング前に PCB の 13 C 安定同位体混合標品を、各同族体 1000pg をスパイクして、同位体希釈法により GC/MS 測定 を行った。 GC/MS 分析には GC/HRMS ( JMS-700 / JEOL )及 び GC-TQMS (450-GC/320-MS, Bruker) を使用した。 GC カ ラムは PCB の異性体分析用キャピラリーカラム HT8-PCB を 用いて同定した。

5 【結果と考察】 従来のハイボリューム・エアーサンプラーを使用する アクティブエアサンプリングはポンプや電源を必要とし、 短時間の大気捕集は天候や汚染源の影響を受ける可能性 がある。パッシブエアーサンプラー (PAS) はその代用とし て、リスク評価のため長期モニタリングを実行し、平均 的な濃度レベルを評価する。 PAS に吸収された絶対量 (ng) をローボリュームエアサンプラーの測定濃度 (ng/m3) と 比較して、各異性体毎の有効試料量 (m3/day) を推定した。

6 Monitoring the air concentrations of POPs POPs monitoring ③ Low (Middle)-Vol ④ Passive sampler ① Hi-Vol PUF Quartz filter Air PUF×2 Activated carbon filter Air ② PS-Air Cartridge Sampling period (day) Sampling Volume (m 3 ) ① Hi-Vol 11000 ② PS-Air Cartridge 1 – 33-9 ③ Low (Middle)–Vol 30 (7)1000 ④ Passive sampler 7 – 30 ?-

7 Active sampling using conventional high volume air sampler requires pumps and a source of electricity. In addition, a short period sampling by high volume air sampler may be affected by the weather conditions, specific contaminated sources. Estimating the risk of hazardous substances, it is important to practice the long term monitoring and evaluate the concentration level in the local area. In order to put this method practical use, we sampled the air simultaneously using PAS and low volume air sampler and compared those results. PAS is consist of one polyurethane foam (PUF, 85mm i.d.×50mm) covered with two stainless steel bowls to eliminate the wind effect or prevent from the rain.

8 Low volume air sampler is consist of quartz micro fiber filter (QMF, 150mm i.d.) and three polyurethane foam plugs. Monitoring the ambient air by PAS and low volume air sampler over the same period, the effectiveness of PAS is verified from isomer distribution point of view. Comparing adsorbed amount (ng) to PAS with concentration (ng/m3) measured by low volume air sampler, we estimate the effective sample volume(m3/day) concerning each chemical substances. PAS and low volume air sampler were deployed every two months at few sites, which is considered to characterize urban-industrial areas. Seasonal variation, summer and winter, is also investigated. Isotope-labeled compounds (surrogate) are added to the sampling medium (PUF) prior to exposure.

9 Atmospheric Distribution and Long-Range Transport Behavior of Organochlorine Pesticides in North America Shen et al (2005 ): Environ. Sci. Technol. 39(2) Sampler Design. The PAS consists of a stainless steel mesh cylinder, filled with XAD-2 resin and suspended in a steel can with an open bottom (11). The PAS is deployed at 1.5 m above ground except in locations with a deep snowpack, where deployment height is increased to ensure that the PAS is not covered by snow. Contaminants are taken up in the resin from the atmosphere by diffusion, whereby previous experiments established independence of the sampling rate over a wide range of wind speeds (11). Measurements of the sorption coefficients for the XAD-2 resin (18) as well as yearlong calibration experiments in Arctic and southern Canada (11) confirmed that the OCPs of interest do not reach equilibrium between the atmospheric gas phase and the resin. This makes it feasible to interpret the amounts of OCPs quantified in the PAS in terms of volumetric air concentrations, using a sampling rate that is largely independent of chemical, wind speed, and temperature (11).

10 (Xianming Zhang et al: Environ. Sci. Technol. 2011, 45, 10509–10515.)

11 Fig. Design of the layered passive air sampling media (XAD and PUF) used to study the distribution of PCBs within the passive sampling medium. (Xianming Zhang et al: Environ. Sci. Technol. 2011, 45, 10509–10515.)

12 Fig. Comparison of the passive air sampling rates of PCB homologues between the passive sampling media of XAD and PUF positioned in the same type of cylindrical sampling housing. (Xianming Zhang et al: Environ. Sci. Technol. 2011, 45, 10509–10515.)

13 Fig. PCB accumulation and distribution in the outer, middle, and inner layers of the passive sampling media (PUF and XAD). Plots are based on duplicated measurements. Mono-PCB (PCB-1) and Penta-PCB (PCB-98/95) are used to illustrate the differences between PCBs of different chlorination or physicochemical properties.. (Xianming Zhang et al: Environ. Sci. Technol. 2011, 45, 10509–10515.) (PCB-98/95) (PCB-1) (PCB-98/95) (PCB-1) PUF XAD

14 Fig. Relationship between the PUF/air partition coefficients (K PUF/A at 20 C) and the mass transfer coefficients for chemical diffusion between the two PUF layers (k PUF12, m/h). The data points represent selected mono-, di-, and tri-CB congeners that penetrated into the inner PUF with detectable amounts. The dashed lines indicate 95% confidence interval of the regression model. (Xianming Zhang et al: Environ. Sci. Technol. 2011, 45, 10509–10515.)

15 Fig. Relationship between the effective diffusivity in PUF (D E,PUF,m 2 /h) and the PUF/air partition coefficient (K PUF/A ) for PCBs. The upper- and lower-bound experimentally derived D E,PUF values were based on a diffusion length of 1 and 2.5 cm, respectively. The upper- and lower-bound modeled D E,PUF values were based on a f /rSA value of 0.14 and 0.53. (Xianming Zhang et al: Environ. Sci. Technol. 2011, 45, 10509–10515.) Derivation of Passive Air Sampling Rates Passive air sampling rates (R, m 3 /d) and PSM-side effective diffusivities (D E, m 2 /h) were obtained by linear least- squares fitting (LLSF) to all duplicated data points.

16 Monitoring the air concentrations of POPs POPs monitoring ③ Low (Middle)-Vol ④ Passive sampler ① Hi-Vol PUF Quartz filter Air PUF×2 Activated carbon filter Air ② PS-Air Cartridge Sampling period (day) Sampling Volume (m 3 ) ① Hi-Vol 11000 ② PS-Air Cartridge 1 – 33-9 ③ Low (Middle)–Vol 30 (7)1000 ④ Passive sampler 7 – 30 ?-

17 PCB/PCN congener profiles in air sample (AAS ) Active Air Sampling and (PAS) Passive Air Sampling Comparison of AAS and PAS

18 DiCB AAS DiCB PAS HpCB AAS HpCB PAS PCB congener profiles in air ( 2Cl, 7Cl) ( 2Cl) ( 7Cl)

19 PCB congener profiles in air ( 3Cl, 4Cl) Te4CB AAS TeCB PAS ( 4Cl) TrCB AAS TrCB PAS ( 3Cl)

20 PCB congener profiles in air ( 5Cl, 6Cl) HxCB AAS HxCB PAS ( 6Cl) PeCB AAS PeCB PAS ( 5Cl)

21 DiCN AAS DiCN PAS TrCN AAS TrCN PAS PCN congener profiles in air ( 2Cl, 3Cl) ( 2Cl) ( 3Cl) ( 2Cl) ( 3Cl)

22 Daily variation of PCB homologue profiles in air sample

23 Daily variation of PCB homologue profiles in air sample 3Cl 2Cl

24 PCB congener profiles in air sample (PUF) Poly Urethane Foam

25 DiCB PAS DiCB PAS DiCB PAS DiCB PAS PCB-11 PCB congener profiles in air ( 2Cl) passive sample (PUF) m+n=2 ( 2C l) Yellow pigments in clothing, paper contain long-banned PCB

26 TrCB PAS TrCB PAS TrCB PAS TrCB PAS PCB congener profiles in air ( 3Cl) passive sample (PUF) m+n=3 ( 3C l)

27 TeCB PAS TeCB PAS TeCB PAS TeCB PAS PCB congener profiles in air ( 4Cl) passive sample (PUF) m+n=4 ( 4C l)

28 PeCB PAS PeCB PAS PeCB PAS PeCB PAS PCB congener profiles in air ( 5Cl) passive sample (PUF) m+n=5 ( 5C l)

29 HxCB PAS HxCB PAS HcCB PAS HxCB PAS PCB congener profiles in air ( 6Cl) passive sample (PUF) m+n=6 ( 6C l)

30 PCN congener profiles in air sample (PUF) Poly Urethane Foam

31 DiCN PAS DiCN PAS DiCN PAS DiCN PAS PCN congener profiles in air ( 2Cl) passive sample (PUF) m+n=2 ( 2C l)

32 TrCN PAS TrCN PAS TrCN PAS TrCN PAS PCN congener profiles in air ( 3Cl) passive sample (PUF) m+n=3 ( 3C l)

33 TeCN PAS TeCN PAS TeCN PAS TeCN PAS PCN congener profiles in air ( 4Cl) passive sample (PUF) m+n=4 ( 4C l)

34 Modeling Estimate of PCBs pollution in Hyogo using multimedia model consist of 6 media Divide the regions into some meshes, and apply multimedia model to each meshes Sediment Water ( liquid ) Soil Air ( gas ) SS Particle Estimation of POPs pollution by Multimedia model advection among the meshes

35 Passive air sampling rates determined in different studies using PUF R(m3/d)locationChemicalsTypeReferences 0.06-0.2indoorPCBscylinder Zhang, et al ( 2012 ) 0.57-1.55indoorPCBsUFOHazrati and Harrad (2007) 1.0-1.1indoorPCBsUFOThis study 2.0-8.3indoorPCBsUFOShoeib and Harner (2002) 0.66-24outdoorPCBsUFOMelymuk, et al. (2010) 2.9-7.3outdoorPCBsUFOChaemfa, et al. (2008)

36 Passive air sampling rates determined in different studies using PUF R(m 3 /d)locationChemicalsTypeReferences 0.06-0.2indoorPCBscylinder Zhang, et al ( 2012 ) 0.57-1.55indoorPCBsUFOHazrati and Harrad (2007) 1.0-1.1indoorPCBsUFONakano et al (2014) 2.0-8.3indoorPCBsUFOShoeib and Harner (2002) 0.66-24outdoorPCBsUFOMelymuk, et al. (2010) 2.9-7.3outdoorPCBsUFOChaemfa, et al. (2008) 0.5-6indoorPCBsUFO Building (2014) 2.7-6.1outdoorPCBsUFONishiwaki (2008 summer) 0.8-3.3outdoorPCBsUFOTakasago (2008 summer) Let’s collect air sample using passive sampler (PUF) See you in Hokkaido meeting for Japan Soc. Env. Chem.

37 Shen et al (2005 ): Environ. Sci. Technol. 39(2)

38

39 Persistent Chlorinated Pesticides in Air, Water, and Precipitation from the Lake Malawi Area, Southern Africa K aelsson et al (2000 ): Environ. Sci. Technol. 34(21)

40

41

42

43 Dehalococcoides ethenogenes Strain 195 Reductively Dechlorinates Diverse Chlorinated Aromatic Pollutants Fennell et al (2004 ): Environ. Sci. Technol. 38(7)

44 Physical-chemical and Maternal Determinants of the Accumulation of Organochlorine Compounds in Four-Year-Old Children, Carrizo et al (2006 ): Environ. Sci. Technol. 40(5), 1420-

45 Physical-chemical and Maternal Determinants of the Accumulation of Organochlorine Compounds in Four-Year-Old Children, Carrizo et al (2006 ): Environ. Sci. Technol. 40(5), 1420-

46 Passive Air Sampling of Organochlorine Pesticides, Polychlorinated Biphenyls, and Polybrominated Diphenyl Ethers Across the Tibetan Plateau Wang et al (2010 ): Environ. Sci. Technol. 44(8)

47 Passive Air Sampling of Organochlorine Pesticides, Polychlorinated Biphenyls, and Polybrominated Diphenyl Ethers Across the Tibetan Plateau Wang et al (2010 ): Environ. Sci. Technol. 44(8)

48 Introduction of our researches Asian Dust Transboundary pollution OH-PCBs Urine, Serum POPs metabolite POPs monitoring Enatioselective Analysis PFCs(PFOS) New POPs PBDEs Modeling POPs in the oceans Air concentration of POPs, passive sampler

49 Asian Dust Desert Adsorption of POPs ? Asian dust Kobe city in 2007 April 2 The air concentrations of POPs has been investigated to reveal the transportation of POPs with Asian Dust in Hyogo since 2007. Hi-Vol air sampler Influence on the Air Concentrations of POPs by Asian Dust transported to Hyogo

50 Asian Dust SPM Chlordanes Asian Dust (pg/m 3 ) (μg/m 3 ) The air concentrations of Chlordanes, Drins, DDTs, PCBs, HCB and HCHs were increased when Asian Dust was transported. It was thought that those POPs were transported from China and the Korean Peninsula according to backward trajectory analyses. When Asian Dust was transported Backward trajectory analyses The results in 2007 Sampling period; May 8 - June 7 in 2007

51 Introduction of our researches Asian Dust Transboundary pollution OH-PCBs Urine, Serum POPs metabolite Enatioselective Analysis PFCs(PFOS) New POPs PBDEs Modeling POPs in the oceans POPs monitoring Air concentration of POPs, passive sampler

52 Introduction of our researches Asian Dust Transboundary pollution OH-PCBs Urine, Serum POPs metabolite POPs monitoring Enatioselective Analysis PFCs(PFOS) New POPs PBDEs Modeling POPs in the oceans Air concentration of POPs, passive sampler

53 Modeling Estimate of PCBs pollution in Hyogo using multimedia model consist of 6 media Divide the regions into some meshes, and apply multimedia model to each meshes Sediment Water ( liquid ) Soil Air ( gas ) SS Particle Estimation of POPs pollution by Multimedia model advection among the meshes

54 Endosulfan

55 Atmospheric Distribution and Long-Range Transport Behavior of Organochlorine Pesticides in North America Shen et al (2005 ): Environ. Sci. Technol. 39(2) Sampler Design. The PAS consists of a stainless steel mesh cylinder, filled with XAD-2 resin and suspended in a steel can with an open bottom (11). The PAS is deployed at 1.5 m above ground except in locations with a deep snowpack, where deployment height is increased to ensure that the PAS is not covered by snow. Contaminants are taken up in the resin from the atmosphere by diffusion, whereby previous experiments established independence of the sampling rate over a wide range of wind speeds (11). Measurements of the sorption coefficients for the XAD-2 resin (18) as well as yearlong calibration experiments in Arctic and southern Canada (11) confirmed that the OCPs of interest do not reach equilibrium between the atmospheric gas phase and the resin. This makes it feasible to interpret the amounts of OCPs quantified in the PAS in terms of volumetric air concentrations, using a sampling rate that is largely independent of chemical, wind speed, and temperature (11).

56 Shen et al (2005 ): Environ. Sci. Technol. 39(2) Extraction and Quantification. The XAD-2 from the sampling container was transferred to an elution column and solvent extracted and then fractionatedonactivated silica gel, as described in detail in Wania et al. (11). This reference also provides details on the quantification of OCPs by gas chromatography/electron capture detection, and the quality assurance steps involving procedure, resin, and field blanks. The extracts were analyzed for cis- (CC) and trans- chlordane (TC), trans-nonachlor (TN), oxychlordane (OXY), heptachlor (HEPT), heptachlor-exo-epoxide (HEPX), aldrin, dieldrin, endrin, and  -endosulfan,DDTgroupcompounds(DDTs), pentachlorobenzene (PeCB), and hexachlorobenzene (HCB). The passive air sampler concentrations (in units of ng/PAS) are presented as blank-corrected averages of duplicates using the averages of 19 resin blanks and 8 field blanks. Time averaged volumetric air concentrations (CA; in pg/m 3 ) are estimated by dividing the sampler concentration (in pg/PAS) by the product of the deployment period (365 d) and the PAS sampling rate. The latter is 0.52 m 3 /d PAS- as estimated from the average of all sampling rates below 1m 3 /d PAS in Table 1 of ref 11.

57 Shen et al (2005 ): Environ. Sci. Technol. 39(2) endosulfan DDT

58 Shen et al (2005 ): Environ. Sci. Technol. 39(2)

59

60

61


Download ppt "Passive Sampling for PCB in Air Takeshi Nakano (Osaka University)"

Similar presentations


Ads by Google