Download presentation
Presentation is loading. Please wait.
Published byBradyn Donat Modified over 9 years ago
1
Divided Range Genetic Algorithms in Multiobjective Optimization Problems Tomoyuki HIROYASU Mitsunori MIKI Sinya WATANBE Doshisha University
2
Topics Multi objective optimization problems Genetic Algorithms Parallel Processing Divided Range Genetic Algorithms (DRGAs)
3
What is Optimization Problems ? Design variables X={x 1, x 2, …., x n } Objective function F Constraints G i (x)<0 ( i = 1, 2, …, k)
4
Multi objective optimization problems Design variables X={x 1, x 2, …., x n } Objective function F={f 1 (x), f 2 (x), …, f m (x)} Constraints G i (x)<0 ( i = 1, 2, …, k)
5
Pareto dominant A F2F2 F1F1 B C better
6
Pareto Solutions 1 / Speed Cost better
7
Ranking 1 F2F2 F1F1 1 1 2 3 5 better
8
Genetic Algorithms Evaluation Crossover Mutation Selection Multi point searching methods
9
I=KI=K+1 I=0 I=1 better F2F2 F1F1
10
GAs in multi objective optimization VEGA Schaffer (1985) VEGA+Pareto optimum individuals Tamaki (1995) Ranking Goldberg (1989) MOGA Fonseca (1993) Non Pareto optimum Elimination Kobayashi (1996) Ranking + sharing Srinvas (1994) Others
11
Parallerization of Genetic Algorithms Evaluation Population Micro-grained model Coarse-grained model Island model
12
Distributed Genetic Algorithm ・ Cannot perform the efficient search ・ Need a big population size in each island f 1 (x) f 2 f 1 f 2 f 1 f 2 Island 1 Island 2
13
Divided Range Genetic Algorithms (DRGA) F2F2 F1F1
14
F2F2 F1F1
15
Genetic Algorithms in Multi objective optimization Expression of genesVector CrossoverGravity crossover SelectionRank 1 selection with sharing Terminal condition When the movement of the Pareto frontier is very small
16
Numerical examples Tamaki et al. (1995) Veldhuizen and Lamount (1999)
17
Example 1 Constraints Objective functions
18
Example 2 Objective functions Constraints
19
Example 3 Objective functions Constraints
20
Example 4 Objective functions Constraints
21
Distributed Genetic Algorithms Used parametersPopulation size and the sharing range
22
Evaluation methods Pareto optimum individuals Error (smaller values arebetter ( E>0) Cover rate( index of diversity, 0<C<1) Number of function calls(smaller values are better) Calculation time(smaller values are better)
23
Results(example 1) Pareto optimum solutions DGADRGA
24
Results(example 1) Error
25
Results(example 1) Number of function calls
26
Results(example 1) Calculation time
27
Results(example 2) Pareto optimum solutions DGADRGA
28
Results(example 2) Cover rate
29
Results(example 2) Number of function calls
30
Results(example 3) Pareto optimum solutions DGADRGA
31
Results(example 4) Pareto optimum solutions SGADRGA
32
Results(example 4) Cover rate
33
Results(example 4) Number of function calls
34
f 2 (x) f 1 (x) f 2 (x) f 1 (x) ・ DGA ・ DRGA f 2 (x) f 1 (x) f 2 (x) f 1 (x) + = f 2 (x) f 1 (x) f 2 (x) f 1 (x) + = How DRGA works well?
35
Conclusions In this study, we introduced the new model of genetic algorithm in the multi objective optimization problems: Distributed Genetic Algorithms (DRGAs). DRGA is the model that is suitable for the parallel processing. can derive the solutions with short time. can derive the solutions that have high accuracy. can sometimes derive the better solutions compared to the single island model.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.