Download presentation
Presentation is loading. Please wait.
Published byQuincy Brewington Modified over 9 years ago
1
Invariant-mass spectroscopy of neutron halo nuclei Takashi Nakamura 中村隆司 Tokyo Institute of Technology 東京工業大学 中日 NP 06, Shanghai
2
T.Nakamura, A.M. Vinodkumar,T.Sugimoto, N.Fukuda, M.Miura, Y.Kondo, N.Aoi, N.Imai, T.Kubo, T.Kobayashi, T.Gomi, A.Saito, H.Sakurai, S.Shimoura,D.Bazin, H.Hasegawa, H.Baba, T. Motobayashi, T.Yakushiji, Y. Yanagisawa, K.Yoneda, K. Watanabe, Y.X.Watanabe, M.Ishihara Collaborators Coulomb Breakup of 11 Li Submitted to Phys.Rev.Lett.
3
Invariant Mass Method (unbound excited states) Radioactive Ion beam Breakup Kinematic Focusing Well-defined Energy by Invariant Mass Thick Target Ex 12 Be vs. 14 Be 12 Be 0+0+ 2+2+ 0+0+ 1-1- 2.24 2.70 MeV 2.10 14 Be Drip line 11 Be+n 3.169 MeV 0+ 1.264 MeV ? 2+2+ 12 Be+2n Bound Region Inbeam spectroscopy Unbound Region Invariant mass spectroscopy
4
14 Be + 12 C 12 Be + n + n + 12 C E ex = S 2n + E rel = 1.56 0.13 MeV E rel (MeV) d /dE rel (mb/MeV) T.Sugimoto, TN et al., (2006) 1.56MeV N=8 Magicity Loss
5
H He Li Be B C N O F Ne Neutron Dripline N =8 N =20 11 Be 19 C N Z Neutron halos Studied by Invariant Mass Method by our group 11 Li 11 Be 2n halo nucleus 1n halo nucleus Neutron Halo Nuclei– Nuclei at the stability limit 9Li9Li n n 10 Be n S n =504 keV S 2n =300 keV 14 Be
6
11 Li High-Z Target (Pb) 9 Li n = N E1 (E x ) dB(E1) dE x d CD dE x 9hc 16 3 Cross section = (Photon Number)x Transition Probability) Invariant Mass Equivalent Photon Method 11 Li* n Coulomb Breakup of 11 Li
7
11 Be : E1 Response of one-neutron Halo ExEx 10~20MeV 1~2MeV N.Fukuda, TN et al., PRC70, 054606 (2004) TN et al.,PLB 331,296(1994) core n dB(E1) dE x 11 Be dB(E1) dE x exp(iqr)| rY 1 m | gs | 2 Z A -S n ~ |exp(-r/ )/r| 2 Fourier Transform Low-lying E1 Strength Halo State exp(iqr)| rY 1 m | s 1/2 | 2 Z A Direct Breakup Mechanism S n =504keV = 0.72
8
One neutron halo nucleus vs. Two neutron halo nucleus 9Li9Li n n 10 Be n Motion between core and 1 valence neutron Motion between 1.Core and neutron 2.Core and neutron 3.Two valence neutrons (neutron-neutron correlations) S 2n =300 keV S n =504 keV
9
Coulomb Dissocitaion of 11 Li (Summary of Previous Results) RIKEN @ 43MeV/nucleon PLB348 (1995) 29. GSI @280MeV/nucleon NPA 619 (1997) 151. MSU@ 28MeV/nucleon PRL 70 (1993) 730. PRC 48(1993) 118.
10
RIPS@RIKEN Primary Beam 18 O 100 AMeV Projectile Fragmentation Secondary Beam 11 Li ~70 AMeV ~20 kcps RIKEN Projectile-fragment Separator 18 O 100 AMeV 11 Li ~70 AMeV
11
11 Li 9 Li n n Experimental Setup @RIPS at RIKEN Pb Target NEUT HOD BOMAG DC DALI 70MeV/nucleon
12
Examine Different Wall Events t1t1 t2t2 11 22 12 Condition: Almost no bias E th =6MeVee to avoid any gamma related events Elimination of Cross-Talk events
13
Coulomb Dissociation Spectrum of 11 Li Angular Distribution
14
Calculation: H.Esbensen et al.,NPA542(1992)310. Private Communication “Soft dipole excitations in 11 Li” Present Result Comparison with the 3-body theory = N E1 (E x ) dB(E1) dE x d CD dE x 9hc 16 3 B(E1) Distribution
15
Non-energy weighted E1 Cluster Sum Rule r1r1 r2r2 n 9 Li r c-2n (Extrapolated cluster strength) ~70% larger than non-correlated strength H.Esbensen et al.,NPA542(1992)310.
16
Experimental Result E(9Li-n) 1MeV Simulation (Phase-space decay) E(9Li-n) 1MeV Correlation?
17
Summary 11 Li(2n halo)+Pb (Coulomb Breakup) Low-lying B(E1) Strength Could be used to see the nn correlation & 9 Li-n correlation in 11 Li (E1 Non-energy weighted sum rule) Strong B(E1) at very low excitation energy c.f. B(E1)=1.05(6) e 2 fm 2 for 11 Be Invariant Mass Spectroscopy ----Powerful Spectroscopic tool
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.