Download presentation
1
Giant resonances, exotic modes & astrophysics
1) The dipole strength : r-process Ultra-High Energy Cosmic Rays 2) Exotic modes : SuperGiant Resonances Giant Pairing Vibrations 3) Surprise ? E. Khan
2
1) The dipole strength
3
The role of dipole strength in nuclei (de)-excitation
r-process : (n,g) rates in the non-equilibrium canonical model Nuclei photodisintegration Statistical model of compound nuclear reaction : Hauser-Feshbach Tn Sn+En (Z,A) + n Tg = TE1(E) r(E) dE Sn (Z,A+1) Photon transmission coefficient sensitive to : Tg the E1 strength distribution TE1(E) the level density r(E)
4
Why using microscopic calculations ?
Phenomenologic Fast and simple to use Extrapolations ? No feedback about nuclear structure Microscopic Efforts consuming ? More suited to extrapolate far from stability : neutron skin Characterize the n-n interaction on the whole nuclear chart Test the model validity on a large scale Lorentzian (Hybrid) Microscopic E1 E1
5
Impact on astrophysical predictions
GDR+PR GDR Maxwellian averaged (n,g) rates r-abundance distributions Effect of the Pygmy Resonance S. Goriely, PLB436 (1998) 10
6
Experiment #1 Systematics E1 strength measurements for neutron rich unstable nuclei below Sn Relativistic Coulomb excitation : AGATA 70Ni High Z MeV/u
7
Meanwhile : microscopic prediction of the E1 strength
Collective excitation in superfluid system QRPA in linear response : small amplitude limit of the perturbed TD-HFB equations harmonic oscillations Connected to the Density Functional Theory : e[r,k] Since Year ~ 2000 Skyrme functionnal ρ=<ψ+(r)ψ(r)> : particle density κ=<ψ(r)ψ(r)> : pairing density HF RPA E (MeV) r (fm-3) E. Khan, N. Sandulescu, Nguyen Van Giai, M. Grasso PRC66 (2002)
8
Comparison with experiment
GDR centroids (cf experiment #1) SLy4 rms on GDR centroids : SIII keV SGII 573 keV SLy4 457 keV MSk7 564 keV BSk7 : rms on 2135 masses : 676 keV rms on 48 GDR centroids : 485 keV interactions developed with both ground and excited states features on a large scale (48 spherical nuclei)
9
Low energy section of EURISOL : masses, b decay, ...
Experiment #2 Inputs : E1, level densities, masses, optical model potential Validity : high level density Sn not too small Direct captures are not negligible for neutron-rich nuclei Low energy section of EURISOL : masses, b decay, ...
10
(n,g) rates QRPA/Hybrid Discrepancy pheno/micro QRPA/QRPA
Agreement HF+BCS QRPA / HFB QRPA T= K Deviation up to a factor 10 S. Goriely, E. Khan, M. Samyn, NPA739 (2004) 331
11
Are Ultra-High Energy Cosmic Rays
made of nuclei ? GRB990123 The Pierre Auger collaboration
12
Ultra High energy Cosmic Rays
E= eV GZK Ankle ~ E-3 Redressed spectrum (x E3)
13
Composition, acceleration & propagation
Open question ! Extra-galactic particles : protons nuclei (56Fe, …) ? COMPOSITION : Open question ! Gamma Ray Bursts, Active Galaxy Nucleus ? N(E)~E-b ACCELERATION : Quantitative answers Interaction with the 2.7 K Cosmic microwave background Extra-galactic Magnetic fields PROPAGATION : Comparison with the measured spectrum on Earth (AUGER, …)
14
= * Propagation of UHECR Photodisintegration rate (~1h-1)
2.7 K Cosmic Microwave Background Photodisintegration cross section g=2.1010 GDR 56Fe : 1021 eV * Photons density Lorentz boosted 10 100 0.1 1 10 100 1000 = E (MeV) E (MeV) Photodisintegration rate (~1h-1)
15
Photodisintegration (I)
Pheno. and microscopic models to predict the GDR strength Photodisintegration calculated within Hauser-Feshbach formalism 55Mn (g,1nx) 51V (g,1nx) Full network with beta decay rate (~ r-process)
16
Photodisintegration (II)
55 54 53 52 51 50 49 48 47 45 44 43 41 40 38 39 37 36 34 35 30 26 22 18 15 14 13 11 9 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 35 36 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 : PSB path Z=8 Z=14 Z=18 Z=22 Z=26 Z N A Photodisintegration (II)
17
Usefull for many other applications
Experiment #3 E1 strength for A<56 nuclei close to the valley of stability Very High intensity : 109 pps for 37,39Ar UHECR campain ? Usefull for many other applications
18
Impact on astroparticle propagation
Source : 56Fe E. Khan, S. Goriely, D. Allard, E. Parizot, et al, Astr. Phys. 23 (2005) 191
19
Interpretation of the ankle
Protons only : b=2.6 Protons & Nuclei : b=2.3 Needs for a galactic CR : Ankle is the galactic/extra-galactic transition D. Allard, E. Parizot, A.V. Olinto, E. Khan, S. Goriely, A&A 443 (2005) 29
20
2) Exotic modes
21
not only a toy for theoreticians
SuperGiant Resonances in neutron stars Nuclear matter : not only a toy for theoreticians
22
The inner crust ~ r0 ~ 0.5 r0 Wigner-Seitz cells
23
Supergiant resonances
L=2 71% EWSR QRPA HFB L=1 ~ Excitations of drip-line nuclei immersed in neutron gas E. Khan, N. Sandulescu, Nguyen Van Giai, PRC71 (
24
Experiment #4 on the most neutron-rich Sn available (138Sn)
Specific heat : spectroscopy of drip-line nuclei drives the excitation spectrum of the Wigner-Seitz cells (low-lying states) Coulex or integrated (p,p’) on the most neutron-rich Sn available (138Sn)
25
Giant pairing vibrations
2n transfer GPV : high energy mode never observed Khan PRC69(2004)014314
26
Experiment #5 208Pb(12Be,10Be) at ~ 10 MeV/u
Exotic nuclei : Q value matched for high energy states Search for the GPV 208Pb(12Be,10Be) at ~ 10 MeV/u
27
3) Surprise
28
GMR in unstable nuclei 56Ni(d,d’) at 50 MeV/u (GANIL)
MAYA active target 56Ni(d,d’) at 50 MeV/u (GANIL)
29
PRELIMINARY Charlotte Monrozeau PhD thesis
56Ni excitation energy spectrum PRELIMINARY E* (MeV) N (/500 keV) Charlotte Monrozeau PhD thesis
30
Outlook Dipole modes plays a crucial role in nuclei de-excitation
Microscopic treatment necessary to draw conclusions on r-process abundances Nature of UHECR Needs for Masses, b decay Systematic E1 data Low lying states close to the drip-line 2 neutron transfer reactions with exotic nuclei Collective excitations in stable nuclei exotic nuclei drip-line nuclei Fermi gas
31
Microscopic models improvements
Neutron average pairing field Finite temperature effects HFB+QRPA Future : - microscopic treatment of the width - better treatment for odd nuclei - microscopic treatment of the deformation - phonon coupling calculations - drip-line nuclei : coupling between continuum and pairing effects : exact continuum calculations 124Sn Dn (MeV) Pairing phase transition T (MeV)
32
Comparison with the data
Monte-Carlo using a extragalactic source with energy distribution ~ E-b CMB : *Protons : p photoproduction and e+-e- pairs production *Nuclei : photodisintegration and e+-e- production Infra Red background Non-negligible effect with the forthcoming AUGER data
33
Next Magnetic field effect on the propagation of UHECR
Nuclei in the acceleration process Comparison with the AUGER data
34
Low and high density WS cells
Size of the WS cells : 1800Sn : 28 fm 982Ge : 14 fm Skyrme-HFB calculations with density dependent pairing interaction Non-zero value of r at the border of the WS cell N. Sandulescu PRC 69 (2004)
35
Specific heat of collective modes
1800Sn Entropy : Scoll=SQRPA-SHFB L=
36
Température dans les noyaux
Transition de phase superfluide Noyaux exotiques chauds : pairing+continuum+température E. Khan, Nguyen Van Giai, M. Grasso NPA731(2004)311
37
Accelerators of the Universe
GRB GANIL
38
The QRPA residual interaction
Skyrme force and surface pairing interaction SLy4 force h EQP < 60 MeV
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.