Download presentation
Presentation is loading. Please wait.
Published byKamryn Mayhall Modified over 9 years ago
1
Spectroscopy at the Particle Threshold H. Lenske 1
2
Agenda: Pairing in the continuum Nuclear Polarizability and Spectral Functions Continuum spectroscopy and Fano-Resonances Summary 2
3
Pairing in the Continuum: Quasiparticle Resonances 3
4
Extended HFB Theory as Coupled Channels Problem: The Gorkov-Equations
5
Spectrum of the Gorkov Equation:
6
Extended HFB Theory: Pairing Self-Energies Energy Shifts and Widths Spectral Functions for particles and holes
7
7 Pairing in Infinite Nuclear Matter
8
Free Space SE (S=0,T=1) Interaction: (Bonn-B Potential) Pairing is a LOW DENSITY Phenomenon Pairing in Infinite Nuclear Matter
9
Pairing Gap Anomal Density Pairing Correlations in Nuclear Matter Pairing Gap and Anomal Density in Symmetric Nuclear Matter
10
Pairing-Field in a Nucleus RARA RARA
11
Neutron Spectrum : 11 Li : Continuum HFB Spectral Functions Dissolution of Shell Structures!
12
g.s. Densities g.s. Densities r 2 : 11 Li : Continuum HFB g.s. Densities
13
Neutron Spectral Functions in 9 Li(3/2-): Continuum Admixtures into the g.s. Continuum Admixtures!
14
Pairing in the Continuum S. Orrigo, H.L., PLB 677 (2009) 14
15
Pairing Resonances in Dripline Nuclei 9 Li+n 10 Li S. Orrigo, H.L., PLB 677 (2009) & ISOLDE newsletter Spring 2010, p.5 15
16
Continuum Spectroscopy at REX-ISOLDE: 10 Li= 9 Li+n d( 9 Li, 10 Li)p@2.36AMeV Data: H. Jeppesen et al., REX-ISOLDE Collaboration, NPA 738 (2004) 511 & NPA 748 (2005) 374. S. Orrigo, H.L., PLB 677 (2009) & ISOLDE newsletter Spring 2010, p.5 16
17
17 New experimental results (Dec. 2013): 10 Li continuum spectroscopy at TRIUMF S. Orrigo, M. Cavallo, F. Capppuzzello et al.
18
Spectral Structures by Dynamical Polarization 18
19
Beyond the Mean-Field: Short-range Correlations in Nuclear Matter PLB483 (2000) 324 NPA723 (2003) 544 NPA (2005)in print Momentum Distribution n(p) = N(k F ) a( p) d
20
20 Nuclear Dynamics…
21
E th [MeV]E exp [MeV] 2+2+ 3.2203.368 1-1- 6.4235.960 0+0+ 6.5136.179 2-2- 6.4466.263 3-3- 7.3727.371 4-(9.270) 1+1+ 7.122 3+3+ 7.159 0-0- 7.374 QRPA Response in 10 Be
22
DCP Neutron Spectral Distributions in 11 Be [0 + × 1/2+]: 0.79 [2 + × 5/2+]: 0.18 [0 + × 1/2-]: 0.58 [2 + × 3/2-]: 0.28
23
Spectral Distributions in Carbon Isotopes …normalized to sum rule E1 Dipole E2 Quadrupole
24
Polarizability of C-Isotopes: HFB+QRPA results Multipole polarizabilties coefficients by sum rules:
25
Longitudinal Momentum Distributions: 17,19 C → 16,18 C + n Carbon Target, E l ab 900 AMeV Binding: Correlation Dynamics 17 C(5/2+,g.s.) S n (the.)=715keV C 2 S(g.s.) = 0.41 (the.): 132 MeV/c (exp.): 143 ± 5 MeV/c (-1n,the.): 124 mb (-1n,exp.): 129± 22 mb Binding: Correlation Dynamics 19 C(1/2+,g.s.) S n (the.)=263keV C 2 S(g.s.) = 0.40 (the.): 69 MeV/c (exp.): 68 ± 3 MeV/c (-1n,the.): 192 mb (-1n,exp.): 233± 51 mb 17 C 19 C
26
Hole Spectrum Particle Spectrum DCP Calculations (HFB+QRPA Core excitations) DCP Calculations (HFB+QRPA Core excitations) DCP Calculations (HFB+QRPA Core excitations) DCP Calculations (HFB+QRPA Core excitations) Dynamical Core Polarization: HFB g.s.: „3-body renormalized“ G- Matrix ph-Interactions: Fermi Liquid Theory Fano Resonances
27
Interactions of Closed and Open Channels: Fano Resonances 27
28
The Spectral Situation encountered in Atoms, Molecules, Nuclei, and Hadrons A closed channel E* is embedded into a continuum of open channels E* interacts via V (r) with open channels given by scattering states E* Interacts via V (r) with closed channels, e.g. of (simple) bound states Bound State Embedded into the Continuum - BSEC 28
29
Examples: Atoms: self-ionizing states of multi-electron configuration Nuclei: Multi-particle-hole states above threshold Mesons: Confined qq-configurations embedded into the continuum of meson-meson scattering states, e.g. (1232), (770), ‘‘(3770)… Baryons: Confined qqq-configurations embedded into the continuum of meson-nucleon scattering states, e.g. (1232), N*(1440), (1405)… 29
30
Visualizing Quantum Interference in Microscopic Systems: Asymmetric Fano-Line Shapes of Resonances 30
31
Historically: The famous Silverman-Lassettre data He(e,e‘)He*( 1 P) @ 500eV Note: q must be negative – q=-1.84 31
32
Fano-Resonances in Nuclei 32
33
Hamiltonian and Wave function The coupled equations (core nucleus integrated out): Multi-channel Fano wave function: 33
34
34 Extension to Several Open Channels n=2 open channels n=2 energetically degenerate solutions with outgoing flux
35
35 Solution 1: fully mixed Solution 2: continuum mixed Resonance superimposed on a smoothly varying background! „Dark States“
36
36 Multi-channel Coupling
37
Resonance Scenarios in Nuclear Physics 37 The Fano-Wave Function:
38
Reaction Matrix Elements and Formation Cross Section The (single channel) Fano-Formula: 38
39
Correlation Dynamics in an Open Quantum System: d-wave Fano-Resonances in 15 C ~60…140keV Sonja Orrigo, H.L., Phys.Lett. B633 (2006) 39
40
Xu Cao, H. L., PRL, submitted DD-Dynamics at Threshold Channel Coupling and the Line Shape of (3770) 40 3.65 X(3900) ?? q=-2.1 ±0.6
41
Summary Dynamics at the particle threshold Pairing at the dripline/in the continuum Nuclear polarizabilities Fano resonances in atomic nuclei Tools for continuum spectroscopy Universality of quantum interference …with contributions by Sonja Orrigo (Valencia) and Xu Cao (Giessen/Lanzhou) 41
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.