Presentation is loading. Please wait.

Presentation is loading. Please wait.

IV. Low Energy Probes of SUSY J Erler (UNAM) A Kurylov (Caltech) C Lee (Caltech) S Su (Arizona) P Vogel (Caltech) G Prezeau (Caltech) V Cirigliano (Caltech)

Similar presentations


Presentation on theme: "IV. Low Energy Probes of SUSY J Erler (UNAM) A Kurylov (Caltech) C Lee (Caltech) S Su (Arizona) P Vogel (Caltech) G Prezeau (Caltech) V Cirigliano (Caltech)"— Presentation transcript:

1 IV. Low Energy Probes of SUSY J Erler (UNAM) A Kurylov (Caltech) C Lee (Caltech) S Su (Arizona) P Vogel (Caltech) G Prezeau (Caltech) V Cirigliano (Caltech) How is SUSY broken? How viable is SUSY dark matter ? Is there enough SUSY CP violation to account for the matter-antimatter asymmetry?

2 High precision, low energy measurements can probe new physics in the “desert” Complementary to Z 0 pole Precision ~ Mass Scale M=m   ~ 2 x 10 -9  exp ~ 1 x 10 -9 M=M W  ~ 10 -3 LEP & SLD programs are complete Sensitivity to off Z 0 - resonance physics Precision is improving

3 Weak decays = 1 SM Expt

4 Weak decays   -decay New physics SUSY

5 Weak decays   -decay SM theory input

6 Weak decays   -decay 0 + ! 0 + “Superallowed” Nuclear structure- dependent corrections

7 Weak decays   -decay 0 + ! 0 + “Superallowed” Nuclear structure- dependent corrections New tests

8 Weak decays   -decay Liquid N 2 Be reflector Solid D 2 77 K poly Tungsten Target 58 Ni coated stainless guide UCN Detector Flapper valve LHe Ultra cold neutronsLANSCE: “UCN A”Future SNS: Pulsed Cold Neutrons: “abBA”

9 Weak decays   -decay Decay correlations Future SNS: Pulsed Cold Neutrons: “abBA” G. Greene

10 Weak decays   -decay LANSCESNSNIST

11 Weak decays V ud g v /g A   -decay  n ~ g v 2 +3g A 2 ILL, Grenoble

12 Weak decays   -decay PSI: “Pi-Beta”

13 Weak decays  kaon decay SUSY Loops: Too small Value of V us important

14 Weak decays  kaon decay SM Theory

15 Weak decays  kaon decay V us V. Cirigliano

16 SUSY Radiative Corrections Propagator Box Vertex & External leg rr

17 Other Inputs 1. Muon (g-2): 2. W Mass: 3. Superpartner Masses: Size of error bar crucial Start analysis with collider lower bounds and vary later m t, M H

18 Muon g-2 SM Theory J. Miller

19 Muon g-2 SUSY

20 Muon g-2 SUSY

21 Muon g-2

22 W Boson & Top Quark Masses Most precisely measured Dominant uncertainties M W =80.425 +/- 0.034M t =178.0 +/- 2.7 +/- 3.3 M Z =91.1875 +/- 0.0021

23 Visible World Hidden World Flavor-blind mediation SUSY Breaking SUSY theory must explain why no SUSY particles yet seen 105 parameters ~ 5 parameters

24 Visible World Hidden World Flavor-blind mediation SUSY Breaking SUSY Theory Flavor-blind SUSY-breaking Exp’t Experiment Kurylov & R-M clashes with

25 CC (non) universality & the MSSM Data appear to conflict with MSSM & models having flavor-blind SUSY-breaking mediation Possible resolutions: 1.M SUSY > TeV 2. Hadronic effects in SM predictions 3. Something is wrong with exp’t 4. New models of SUSY-breaking 5. Go beyond the MSSM SUSY irrelevant to low energy observables Better control of non-pQCD Exp’t: n  decay, K e3 decay ??? Break R-parity New ideas needed ! But NuTeV LANSCE, NIST, SNS…

26 Kaon Decays & V us KLOE PrelimUnitarity V us Cirigliano & De Lucia

27 Kaon Decays & V us KLOE PrelimUnitarity V us

28 CC (non) universality & the MSSM Data appear to conflict with MSSM & models having flavor-blind SUSY-breaking mediation Possible resolutions: 1.M SUSY > TeV 2. Hadronic effects in SM predictions 3. Something is wrong with exp’t 4. New models of SUSY-breaking 5. Go beyond the MSSM SUSY irrelevant to low energy observables Better control of non-pQCD Exp’t: n  decay, K e3 decay ??? Break R-parity But NuTeV

29 Visible World Hidden World Flavor-blind mediation SUSY Breaking SUSY Theory OK if no SUSY dark matter 12k Test in scattering experiments “R parity violation” (RPV) Weak decays MWMW  l2 APV

30 R-Parity Violation (RPV) W RPV = ijk L i L j E k +  ijk L i Q j D k +  / i L i H u +  ijk U i D j D k  L=1  B=1 L i, Q i E i, U i, D i SU(2) L doublets SU(2) L singlets proton decay: Set  ijk =0

31 Four-fermion Operators 12k  1j1  L=1


Download ppt "IV. Low Energy Probes of SUSY J Erler (UNAM) A Kurylov (Caltech) C Lee (Caltech) S Su (Arizona) P Vogel (Caltech) G Prezeau (Caltech) V Cirigliano (Caltech)"

Similar presentations


Ads by Google