Download presentation
Presentation is loading. Please wait.
Published byDennis Seyler Modified over 9 years ago
1
1 MPE and Partial Inversion in Lifted Probabilistic Variable Elimination Rodrigo de Salvo Braz University of Illinois at Urbana-Champaign with Eyal Amir and Dan Roth
2
Page 2 Repetitive patterns in graphical models sick(mary,measles) hospital(mary) epidemic(measles)epidemic(flu) sick(mary,flu) … … sick(bob,measles) hospital(bob) sick(bob,flu) …… … …… ……
3
Page 3 Repetitive patterns in graphical models sick(mary,measles) hospital(mary) epidemic(measles)epidemic(flu) sick(mary,flu) … … sick(bob,measles) hospital(bob) sick(bob,flu) …… … …… …… sick(mary,measles), epidemic(measles))
4
Page 4 Repetitive patterns in graphical models sick(mary,measles) hospital(mary) epidemic(measles)epidemic(flu) sick(mary,flu) … … sick(bob,measles) hospital(bob) sick(bob,flu) …… … …… ……
5
Page 5 Lots of Redundancy! sick(mary,measles) hospital(mary) epidemic(measles)epidemic(flu) sick(mary,flu) … … sick(bob,measles) hospital(bob) sick(bob,flu) …… … …… ……
6
Page 6 Representing structure sick(mary,measles) epidemic(measles)epidemic(flu) sick(mary,flu) … … sick(bob,measles)sick(bob,flu) …… …… sick(P,D) epidemic(D) Poole (2003) named these parfactors, for “parameterized factors”
7
Page 7 Parfactor sick(Person,Disease) epidemic(Disease) 8 Person, Disease sick(Person,Disease), epidemic(Disease))
8
Page 8 Parfactor sick(Person,Disease) epidemic(Disease) 8 Person, Disease sick(Person,Disease), epidemic(Disease)), Person mary, Disease flu
9
Page 9 Lifted Probabilistic Inference Goal: to perform inference at the first-order level, without resorting to grounding. First-Order Variable Elimination (FOVE): a generalization of Variable Elimination in propositional graphical models. Eliminates classes of random variables at once.
10
Page 10 Inference - Inversion Elimination (IE) P(hospital(mary) | sick(mary, measles)) = ? hospital(mary) sick(mary, D) epidemic(D)
11
Page 11 Inference - Inversion Elimination (IE) P(hospital(mary) | sick(mary, measles)) = ? hospital(mary) sick(mary, D) epidemic(D) = Unification
12
Page 12 Inference - Inversion Elimination (IE) P(hospital(mary) | sick(mary, measles)) = ? sick(mary,measles) hospital(mary) sick(mary, D) D measles epidemic(measles)epidemic(D) D measles
13
Page 13 Inference - Inversion Elimination (IE) P(hospital(mary) | sick(mary, measles)) = ? sick(mary,measles) hospital(mary) sick(mary, D) D measles epidemic(measles)epidemic(D) D measles =
14
Page 14 Inference - Inversion Elimination (IE) P(hospital(mary) | sick(mary, measles)) = ? sick(mary,measles) hospital(mary) sick(mary, D) D measles epidemic(measles)epidemic(D) D measles
15
Page 15 Inference - Inversion Elimination (IE) P(hospital(mary) | sick(mary, measles)) = ? sick(mary,measles) hospital(mary) sick(mary, D) D measles epidemic(D) D measles
16
Page 16 Inference - Inversion Elimination (IE) hospital(mary) sick(mary, D) D measles epidemic(D) D measles P(hospital(mary) | sick(mary, measles)) = ?
17
Page 17 Inference - Inversion Elimination (IE) P(hospital(mary) | sick(mary, measles)) = ? hospital(mary) sick(mary, D) D measles
18
Page 18 Inference - Inversion Elimination (IE) P(hospital(mary) | sick(mary, measles)) = ? hospital(mary)
19
Page 19 Inversion Elimination Joint (A ) Example X (p(X)) X,Y (p(X),q(X,Y)) Marginalization by eliminating class q(X,Y): q(X,Y) X (p(X)) X,Y (p(X),q(X,Y)) X (p(X)) q(X,Y) X,Y (p(X),q(X,Y))
20
Page 20 Inversion Elimination q(X,Y) X,Y (p(X),q(X,Y)) = X,Y q(X,Y) (p(X),q(X,Y)) = X,Y (p(X)) = X Y (p(X)) = X (p(X)) * depends on certain conditions *
21
Page 21 Inversion Elimination - Conditions - I Eliminated atom must contain all logical variables in parfactors involved. sick(P,D) epidemic(D)
22
Page 22 Inversion Elimination - Conditions - I Eliminated atom must contain all logical variables in parfactors involved. sick(P,D) epidemic(D) Ok, contains both P and D
23
Page 23 Inversion Elimination - Conditions - I Eliminated atom must contain all logical variables in parfactors involved. sick(P,D) epidemic(D) Not Ok, missing P sick(P,D)
24
Page 24 Inversion Elimination - Conditions - I Eliminated atom must contain all logical variables in parfactors involved. q(Y,Z) p(X,Y) No atom can be eliminated
25
Page 25 Inversion Elimination - Conditions - I … sick(mary, flu) epidemic(flu) sick(mary, rubella) epidemic(rubella) … sick(mary, D) epidemic(D) D measles Eliminated atom must contain all logical variables - guarantees that subproblems are disjoint.
26
Page 26 Inversion Elimination - Conditions - II epidemic(measles) epidemic(flu) epidemic(D2) epidemic(D1) epidemic(rubella) … Inversion Elimination Not Ok D1 D2 Requires eliminated RVs to occur in separate instances of parfactor
27
Page 27 e(D) D1 D2 (e(D 1 ),e(D 2 )) = e(D) (0,0) #(0,0) in e(D),D1 D2 (0,1) #(0,1) in e(D),D1 D2 (1,0) #(1,0) in e(D),D1 D2 (1,1) #(1,1) in e(D),D1 D2 = e(D) v (v) #v in e(D),D1 D2 Counting Elimination - A Combinatorial Approach = ( ) v (v) #v in e(D),D1 D2 (from i) |e(D)| i i=0
28
Page 28 No shared logical variables between atoms, so counting can be done independently (epidemic(D 1, Region), epidemic(D 2, Region)) Counting Elimination - A Combinatorial Approach
29
Page 29 Uncovered by Inversion and Counting Eliminating epidemic from epidemic(Disease1,Region), epidemic(Disease2,Region), donations) No logical variable in all atoms, so no Inversion Elimination Shared logical variables, so no Counting Elimination
30
Page 30 Partial Inversion e(D,R) D1 D2,R e(D1,R), e(D2,R), d ) e(D,R) D1 D2,R e(D1,R), e(D2,R), d ) R e(D,r) D1 D2 e(D1,r), e(D2,r), d ) R ’ d ) = ’ d ) |R| = ’’ d ) Inversion elimination is the case where all logical variables are inverted and subproblem is propositional.
31
Page 31 Partial Inversion, graphically epidemic(D2,r 1 ) epidemic(D1,r 1 ) D1 D2 donations epidemic(D2,R) epidemic(D1,R) D1 D2 donations epidemic(D2,r 10 ) epidemic(D1,r 10 ) D1 D2 … … Each instance a counting elimination problem
32
Page 32 Partial inversion conditions Conditioned subsets must be disjoint friends(P1, P2), friends(P2,P1), smoke(P1), smoke(P2) ) Doesn’t work because subproblems share instances of friends.
33
Page 33 Second contribution: Lifted MPE In propositional case, MPE done by factors containing MPE of eliminated variables. AB C D
34
Page 34 MPE AB D BD 000.3C=1 010.2C=1 100.5C=0 110.9C=1 In propositional case, MPE done by factors containing MPE of eliminated variables.
35
Page 35 MPE AB B 00.5C=1,D=0 11.4C=1,D=1 In propositional case, MPE done by factors containing MPE of eliminated variables.
36
Page 36 MPE A A MPE(B,C,D) 00.9B=0,C=1,D=0 10.7B=1,C=1,D=1 In propositional case, MPE done by factors containing MPE of eliminated variables.
37
Page 37 MPE 0.9A=0,B=1,C=1,D=1 In propositional case, MPE done by factors containing MPE of eliminated variables.
38
Page 38 MPE Same idea in First-order case But factors are quantified and so are assignments: p(X)q(X,Y) MPE 000.3 r(X,Y) = 1 010.2 r(X,Y) = 1 100.5 r(X,Y) = 0 110.9 r(X,Y) = 1 8 X, Y p(X), q(X,Y))
39
Page 39 MPE After Inversion Elimination of q(X,Y): p(X)q(X,Y) MPE 000.3 r(X,Y) = 1 010.9 r(X,Y) = 1 100.5 r(X,Y) = 0 110.3 r(X,Y) = 1 8 X, Y p(X), q(X,Y)) p(X) ’’ MPE 00.05 8 Y q(X,Y) = 1, r(X,Y) = 1 10.02 8 Y q(X,Y) = 0, r(X,Y) = 1 8 X ’ p(X)) Lifted assignments
40
Page 40 MPE After Inversion Elimination of p(X): 8 X ’ p(X)) ’’ MPE 0.009 8 X 8 Y p(X) = 0, q(X,Y) = 1, r(X,Y) = 0 ’’ ) p(X) ’’ MPE 00.05 8 Y q(X,Y) = 1, r(X,Y) = 1 10.02 8 Y q(X,Y) = 0, r(X,Y) = 1
41
Page 41 MPE After Counting Elimination of e: e(D1)e(D2) MPE 000.3 r(D1,D2) = 1 010.9 r(D1,D2) = 1 100.5 r(D1,D2) = 0 110.3 r(D1,D2) = 1 8 D1, D2 e(D1), e(D2)) ’’ MPE 0.05 9 38 (D1=0,D2=0) e(D1)=0, e(D2) = 1, r(D1,D2) = 1 9 12 (D1=0,D2=1) e(D1)=1, e(D2) = 1, r(D1,D2) = 1 9 15 (D1=1,D2=0) e(D1)=1, e(D2) = 0, r(D1,D2) = 0 9 25 (D1=1,D2=1) e(D1)=0, e(D2) = 0, r(D1,D2) = 1 ’)’)
42
Page 42 Conclusions Partial Inversion: More general algorithm, subsumes Inversion elimination Lifted MPE same idea as in propositional VE, but with Lifted assignments: describe sets of basic assignments Universally quantified comes from Inversion Existentially quantified comes from Counting elimination Ultimate goal: To perform lifted probabilistic inference in way similar to logic inference: without grounding and at a higher level.
43
Page 43
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.