Presentation is loading. Please wait.

Presentation is loading. Please wait.

PROCEDURE DESIGN CRITERIA

Similar presentations


Presentation on theme: "PROCEDURE DESIGN CRITERIA"— Presentation transcript:

1 PROCEDURE DESIGN CRITERIA
Presented by Eliane Belin DGAC - ENAC

2 TABLE OF CONTENTS Waypoint tolerance Stabilization distance
Positioning method Accuracy Waypoint tolerance Nominal trajectory Stabilization distance Path terminator Strategy Protection area Check list

3 RNAV SYSTEM A/C POSITION
INS / IRS GNSS VORDME DME DME A/C POSITION

4 DEFINITION OF RNAV VORDME
Reference facility VOR/DME D : Distance from reference facility to the waypoint D D1 D1 : Distance from reference facility to the tangent point D2 D2 : Distance from the tangent point to the waypoint Nominal Track WAY-POINT

5 DME/DME POSITIONING DME3 DME1 DME4 DME2 d1

6 Area of simultaneous use of two DME stations
30° 60° 1NM D D Update area for DME stations located at distance “D” apart

7 2 points given by the intersection of the three LOPs
SVk : xk, yk, zk Rk SVi : xi, yi, zi Ri Rj SVj : xj, yj, zj GPS receiver location

8 TABLE OF CONTENTS Stabilization distance Path terminator
Positioning method Accuracy Waypoint tolerance Nominal trajectory Stabilization distance Path terminator Strategy Protection area Check list

9 DIFFERENT CRITERIA Guidance material ICAO DME DME / GNSS DOC 8168
RNAV DME-DME RNAV VOR-DME Guidance material DME DME / GNSS ICAO DOC 8168 RNAV GNSS

10 SYSTEM ACCURACY HORIZONTAL VIEW XTT depends on FTT
Nominal Flight Path HORIZONTAL VIEW True Aircraft Flight Path True Aircraft Position XTT XTT depends on FTT Estimated Flight Path Estimated Position ATT FTT Nominal Aircraft Position

11 WAYPOINT TOLERANCE ATT XTT

12 SYSTEM ACCURACY: VOR/DME AND DME-DME
Ei : Stations Tolerance ST : System computation Based on 2s (95%) confidence limits FTT : Flight Technical Tolerance

13 VORDME : ATT Calculation
Nominal Track Reference facility VOR/DME D D1 D2 ADT : Along DME Tolerance ADT AVT : Along VOR Tolerance ST : System computationTolerance AVT

14 VORDME : XTT Calculation
Nominal Track VOR/DME Reference facility D D1 VT VT : VOR Tolerance DT DT : DME Tolerance FTT : Flight Technical Tolerance ST : Sytem computation Tolerance

15 Distance for calculation = Radio Horizon D=1.23 x (ft)
DME-DME : ATT and XTT No reference to a DME/DME couple d = 0.25NM xD Altitude = previous segment minimum altitude Distance for calculation = Radio Horizon D=1.23 x (ft) Only 2 DMEs available: multiply by 1.29 !

16 System accuracy: VOR / DME
SUMMING UP System accuracy: VOR / DME ATT = XTT = System accuracy: DME / DME ATT = XTT =

17 VORDME- DMEDME: FTT and ST

18 VORDME - DME/DME PROTECTION AREA WIDTH
XTT calculation Initial Intermediate 1/2 AW = MAX( 2NM, 1.5 XTT + BV) BV : 1NM Final, Mapt and TP 1/2 AW = MAX( 1NM, 1.5 XTT + BV) BV : 0.5NM

19 DESIGN OF PROTECTION AREAS
PRIMARY AREA SECONDARY AREA IAWP IWP

20 GNSS TOLERANCE Space segment tolerance Receiver tolerance
System computer tolerance : ST Flight technical tolerance :FTT

21 Number of satellites in view
DILUTION OF PRECISION Number of satellites in view PRECISION GEOMETRY Satellite Outage

22 INTEGRITY IMAL : Integrity monitoring alarm limit
Use of GNSS Position Accuracy of the position Integrity IMAL Value IMAL : Integrity monitoring alarm limit The value depends on the phase of flight GNSS Position not to be used

23 RAIM Prediction With AUGUR
LFPO. PARIS ORLY Baro Aided Outages 24 May :36:34 until 24 May :41:34 UTC (00:05:00) DP: 4.949 Non-Baro Aided Outages 24 May :36:34 until 24 May :44:34 UTC (00:08:00) DP: 5.442

24 GNSS MODE descent en route holding climbing approach taking off
Terminal ROUTE Terminal Approach en route descent holding climbing initial approach airport A airport B landing 30 Nm taxiing taking off IMAL is coupled with GNSS mode

25 GNSS : XTT - ATT 24

26 Sensor Protection area Width
KEY POINT 1 Sensor ATT and XTT Protection area Width PLAN FOR ALL SENSORS

27 TABLE OF CONTENTS Waypoint tolerance stabilization distance
Positioning method Accuracy Waypoint tolerance Nominal trajectory stabilization distance Path terminator Strategy Protection area Check list

28 ALL RNAV TRAJECTORIES ARE CODED INTO THE DATA BASE
On board data base Aerodrome data Airspace limits Available navaids Flight paths to follow (charts) ALL RNAV TRAJECTORIES ARE CODED INTO THE DATA BASE

29 Next WP Start of descent Planned flight Path Interception

30 Navigation Performance
GPS PRIMARY FB TURN Navigation Performance CLB FLT CRZ OPT REC MAX FL FL FL390 <REPORT UPDATE AT *[ ] BRG /DIST ---° / TO [ ] PREDICTIVE <GPS GPS PRIMARY REQUIRED ACCUR ESTIMATED 2.1NM HIGH NM GPS PRIMARY Sensor

31 CODING PATH CODING CONSTRAINTS CF : Course to fix DF : Direct to fix
How to navigate PATH TERMINATOR

32 Path Terminator concept
Transforms procedures into coded flight paths Set of two letters PT instructs to navigate from a starting point to a specific point or terminating condition

33 TF : Track between Fixes

34 DF : Direct to Fix

35 CF : Course to Fix 135°

36 ARINC 424 PATH TERMINATOR

37 PATH TERMINATOR TF TF CF DF CF TF TF CF DF DF TF : Track between fixes
CF : course to fix DF : Direct to fix

38 KEY POINT 2 Type of waypoint Nominal trajectory Protection area
PATH Terminator Be aware of coding influence Real need of COMMUNICATION with coding suppliers

39 TYPE OF WAYPOINTS IAWP IWP FAWP MAWP MAHWP HWP AWP DWP

40 TURN INITIATION DISTANCE
L1 = R.tan ( L2 = / 2 ) 5 . TAS / 3600 L=L1+L2 L1 L2 L 2 R

41 FLY-BY BANK : 25° TAS Turn angle

42 TURN STABILIZATION DISTANCE
L1= r1.sin L2= r1.cos .tg30° L3 = r1 (1/sin30° - 2cos / sin60° ) L4 = r2 . tan15° L5 = 10 . TAS / 3600 L = L1 + L2 + L3 + L4 + L5 L1 L2 L4 L3 L5 L 30° R2 60° 30° R1

43 FLY-OVER BANK : 15° TAS Turn angle

44 WP1 : FLY-OVER WP2 : FLY-BY

45 WP1 : FLY-BY WP2 : FLY-BY

46 WP1 : FLY-OVER WP2 : FLY-OVER

47 TABLE OF CONTENTS Waypoint tolerance stabilization distance
Positioning method Accuracy Waypoint tolerance Nominal trajectory stabilization distance Path terminator Strategy Protection area Check list

48 PROCEDURE STRATEGY FLOATING WP abatement Séparation SID/ STAR
Attente / IAF décalé des axes de pistes Concept Y ou T Mise en place de WP supplémentaires pour correspondre au séquencement Prise en compte des zone urbanisée Utilisation de la descente continue (CDA) FLOATING WP PROCEDURE abatement Séparation SID/ STAR Attente / IAF décalé des axes de pistes Concept Y ou T Mise en place de WP supplémentaires pour correspondre au séquencement Prise en compte des zone urbanisée Utilisation de la descente continue (CDA)

49 Holding shift from RWY axis
Segregation traffic WPs floating Distance for sequencing

50 STOCHOLM ARLANDA

51 NON RNAV

52 RNAV

53 Project CDA-evaluation with KLM FMS data Aircraft: B747-400
Nationaal Lucht- en Ruimtevaartlaboratorium National Aerospace Laboratory NLR Project CDA-evaluation with KLM FMS data Aircraft: B Procedure: 2000 ft approach Runway: 06

54 CONTINUOUS DESCENT APPROACH
Nationaal Lucht- en Ruimtevaartlaboratorium National Aerospace Laboratory NLR CONTINUOUS DESCENT APPROACH OM SUGOL RIVER AMEGA from ARTIP 21.0 DME PAM 14.0 DME SPL 16.5 DME RTM CH FAP NORBI DETSI 27.0 to THR 220 MAX, 200 M IN KTS 220 MAX, 200 M IN KTS

55 Footprint B747-400, Conventional 2000 ft approach
Nationaal Lucht- en Ruimtevaartlaboratorium National Aerospace Laboratory NLR 10 5 Y (km) -5 -10 -45 -40 -35 -30 -25 -20 -15 -10 -5 5 X (km) 55.0 dB(A); km² 65.0 dB(A); km² 75.0 dB(A); km²

56 Footprint B747-400, Conventional 3000 ft approach
Nationaal Lucht- en Ruimtevaartlaboratorium National Aerospace Laboratory NLR Footprint B , Conventional 3000 ft approach 10 5 Y (km) -5 -10 -45 -40 -35 - -30 -25 -20 -15 -10 5 - X (km) 55.0 dB(A); km² 65.0 dB(A); km² 75.0 dB(A); km²

57 Footprint B747-400, Continuous Descent Approach
Nationaal Lucht- en Ruimtevaartlaboratorium National Aerospace Laboratory NLR Footprint B , Continuous Descent Approach 10 5 Y (km) -5 -10 -45 -40 -35 -30 -25 -20 -15 -10 -5 5 X (km) 55.0 dB(A); km² 65.0 dB(A); km² 75.0 dB(A); km²

58 Nationaal Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR

59 KEY POINT 3 Operational issues Pilots needs ATC needs
Environmental aspect Safety issues Minimum distance Coding requirements

60 TABLE OF CONTENTS Waypoint tolerance stabilization distance
Positioning method Accuracy Waypoint tolerance Nominal trajectory stabilization distance Path terminator Strategy Protection area Check list

61 PROTECTION AREA WHAT’S NEW ? WHAT’ S REMAINING ?
Use of wind spiral for all turn protections Max turn angle :120° (no reversal) No bank angle delay for a fly-by WP Protection deal with max TAS and low TAS WHAT’ S REMAINING ? Bank angle : 25° / 15° Pilot reaction delay : 6 sec / 3 Sec Descend and climb gradient MOC

62 TURN AT FLY-OVER WP 30° c ATT

63 FLY-BY WP turn angle  90° A R 30° A/2 R.TAN(A/2) R’ R ’’ ATT c S’ S’’

64 FLY-BY turn angle > 90 °
ATT r r.tan(A/2) R’ R’’ c S’ S’’

65 TF : PROTECTION AREA 6565

66 DF : PROTECTION AREA C C= Pilot reaction + bank angle delay A/2

67 MISSED APPROACH SEGMENT
Some RNAV systems are disconnected in case of missed approach Plan a dead reckoning track Protection area splays at 15° from earliest MAWP Complete MOC within the secondary area (for class A GNSS )

68 15 °Splay from earliest MAWP
MISSED APPROACH Area Width at MAWP 15 °Splay from earliest MAWP + Area Width at MATWP COMPARE > :Solution1 < :Solution2

69 Check list Protection area A/C Equipment XTT- ATT Data in WGS84
Area width Strategy Nominal trajectory Turning area Earliest [R” - R’] Latest [S” - S’] Minimum distances Path terminator Wind spiral Minimal altitude Low speed accomodation MOC Slope Connecting point / WP Flight simulation

70 My personal point of view
Users should gain benefits from RNAV Mature design criteria are available Safety relies on communication and training On line help : will exist Ecacnav.com RNP concept instead of sensor concept

71 Any questions?

72 DILUTION OF PRECISION GOOD GEOMETRIE BAD GEOMETRY Uncertainty Area

73 WAYPOINT Fly-over waypoint Symbol : Fly-by waypoint Symbol :
Expressed in WGS84 coordinates IAWP, IWP, FAWP, MAWP, MAHWP Fly-over waypoint Symbol : Fly-by waypoint Symbol :

74 WP1 : FLY-OVER WP2 : FLY-BY
Stabilisation distances are necessary

75

76 MISSED APPROACH SOC MAWP TWP 15°
Some RNAV systems are disconnected in case of missed approach Plan a dead reckoning track Protection area splays at 15° from earliest MAWP MFO entiére dans l ’aire secondaire (sauf pour les multisenseur)

77 MISSED APPROACH SOC MAWP TWP 15°
Some RNAV systems are disconnected in case of missed approach Plan a dead reckoning track Protection area splays at 15° from earliest MAWP MFO entiére dans l ’aire secondaire (sauf pour les multisenseur)

78 MISSED APPROACH SOC TWP MAWP 15°
Some RNAV systems are disconnected in case of missed approach Plan a dead reckoning track Protection area splays at 15° from earliest MAWP MFO entiére dans l ’aire secondaire (sauf pour les multisenseur)

79


Download ppt "PROCEDURE DESIGN CRITERIA"

Similar presentations


Ads by Google