Download presentation
Published byRey Shaddock Modified over 9 years ago
1
Penning-Trap Mass Spectrometry for Neutrino Physics
Sergey Eliseev Max-Planck Institute for Nuclear Physics, Heidelberg, Germany International Workshop XLIII on Gross Properties of Nuclei and Nuclear Excitations Hirschegg , January 12, 2015
2
OUTLINE Basics of Penning-Trap Mass Spectrometry
PTMS for Neutrino Physics Type of Neutrinos Determination of Neutrino Mass Search for heavy sterile Neutrinos
3
Basics of Penning-Trap Mass Spectrometry
4
Masses of Exotic Nuclides (short-lived to stable)
Field Examples dm/m shell closures, shell quenching, regions of Nuclear structure physics deformation, drip lines, halos, Sn, Sp, S2n, S2p, δVpn, island of stability 10-6 to 10-7 rp-process and r-process path, waiting-point Astrophysics nuclear models mass formula nuclei, proton threshold energies, astrophysical reaction rates, neutron star, x-ray burst Weak interaction studies CVC hypothesis, CKM matrix unitarity, Ft of 10-8 superallowed ß-emitters Metrology, fundamental constants α (h/mCs, mCs /mp, mp/me ), mSi 10-9 to 10-10 0nbb, 0n2EC Neutrino physics mmother – mdaughter : heavy neutrinos ~10-10 neutrino mass <10-11 mp and mp me- and me+ mion, electron binding energy CPT tests QED in HCI <10-11
5
nc = q 1 2p m B Penning trap the most accurate mass spectrometer
q/m strong uniform static B-field 1 q nc = 2p m
6
Max-Planck Institute for Nuclear Physics,
Penning trap the most accurate mass spectrometer B q/m strong uniform static B-field 1 q nc = 2p m SHIPTRAP JYFLTRAP TRIGATRAP MLLTRAP THe-TRAP Max-Planck Institute for Nuclear Physics, Heidelberg < 10-11 DB B h-1 < 5 · 10-9 DB B h-1
7
Penning Trap magnetic field electrostatic field B q/m
8
Penning Trap B modified cyclotron motion: magnetron motion:
axial motion:
9
long-lived and stable nuclides
short-lived nuclides Brown & Gabrielse, Rev. Mod. Phys. 58, 233 (1986)
10
Penning-Traps worldwide
JYFLTRAP SHIPTRAP MLLTRAP TITAN TRIGATRAP THe-TRAP CPT LEBIT ISOLTRAP FSU on-line facility for short-lived nuclides dm/m ~ (ToF-ICR technique) ultra-precise Penning trap for long-lived and stable nuclides dm/m <10-10 (FT-ICR technique)
11
Penning-Traps worldwide
JYFLTRAP SHIPTRAP MLLTRAP TITAN TRIGATRAP THe-TRAP LEBIT CPT ISOLTRAP PENTATRAP FSU CMU-TRAP
12
High Precision PTMS Q = Mmother- Mdaughter of b and bb transitions
< 10-10 type of neutrinos heavy sterile neutrinos < 10-11 neutrino mass
13
High Precision PTMS Q = Mmother- Mdaughter of b and bb transitions
< 10-10 type of neutrinos heavy sterile neutrinos < 10-11 neutrino mass
14
double-electron-capture nuclides
double b-decay nuclides
15
two-neutrino mode neutrinoless mode
16
neutrinoless mode
17
• • • Observation of 0nbb or 0n2EC proves that:
neutrino is a Majorana particle, n = n • conservation of total lepton number breaks Measurement of T1/2 gives: • effective Majorana neutrino mass
18
Neutrinoless Double-b - Decay
T1/2~1019y T1/2>1025y Contribution of Penning Traps: measurements of Qbb – values with a sub-keV uncertainty transition Q-value precision 76Ge – 76Se (50) E-10 G. Douysset et al., PRL 86, 4259 (2001) 100Mo – 100Ru (17) E-9 S. Rahaman et al., PLB 662, 111 (2008) 130Te – 130Xe (13) E-10 M. Redshaw et al., PRL 102, (2009) 136Xe – 136Ba (37) E-09 M. Redshaw et al., PRL 98, (2007) 48Ca – 48Ti (3) E-10 M. Redshaw et al., PRC 86, (R) (2013) A.A. Kwiatkowski et al., PRC 89, (2014) Experiments: GERDA & MAJORANA : 76Ge NEMO-3: 100Mo COBRA & CUORE: 130Te EXO: 136Xe CANDLES & CARVEL: 48Ca
19
expected T1/2 of 0n2EC > 1030 yr
Neutrinoless Double-Electron Capture expected T1/2 of 0n2EC > 1030 yr
20
expected T1/2 of 0n2EC > 1030 yr
Neutrinoless Double-Electron Capture expected T1/2 of 0n2EC > 1030 yr
21
Neutrinoless Double-Electron Capture
resonant enhancement of capture rate T1/2 of 0n2EC ~ 1023 yr Search for a transition with (Q-B2h-Eg) < 1 keV Measurement of Q=M1-M2 at ~ 100 eV-Level
22
Measurements with SHIPTRAP/GSI
Addressed 0n2EC transitions 112Sn → 112Cd JYFLTRAP, S. Rahaman et al., Phys. Rev. Lett. 103, (2009) JYFLTRAP, V. S. Kolhinen et al., Phys. Lett. B 684, 17 (2010) 74Se → 74Ge FSU, B. J. Mount et al., Phys. Rev. C 81, (R) (2010) 136Ce → 136Ba JYFLTRAP, V. S. Kolhinen et al., Phys. Lett. B 697, 116 (2011) 184Os → 184W TRIGATRAP, C. Smorra et al., Phys. Rev. C 86, (2012) 152Gd → 152Sm 164Er → 164Dy Measurements with SHIPTRAP/GSI 180W → 180Hf 96Ru → 96Mo 162Er → 162Dy Phys. Rev. Lett (2011) ; (2011) ; 168Yb → 168Er Phys. Rev. C 83 (2011) ; 84 (2011) ; 84 (2011) ; 106Cd → 106Pd Nucl. Phys. A 875 (2012) 1; 156Dy → 156Gd 124Xe → 124Te 130Ba → 130Xe
23
between nuclear ground states
0+ → 0+ transitions between nuclear ground states 2EC-transition Q (old), keV D (old), keV Q (new), keV D (new), keV T1/2·|m2EC|2, yr 152Gd → 152Sm (3.5) (3.5) (0.2) (0.2) 164Er → 164Dy (3.9) (3.9) (0.12) (0.12) ·1030 180W → 180Hf 144.4(4.5) (4.5) (0.2) (0.2) ·1027 JYFLTRAP, S. Rahaman et al., Phys. Rev. Lett. 103, (2009)
24
multiple-resonance phenomenon in 156Dy
|M| =3 for 0+ → 0+ T1/2 (0+→0+) ~ 31024 y for |m2EC|=1 eV
25
Q-values of all important 0nbb – transitions
JYFLTRAP SHIPTRAP MLLTRAP TITAN TRIGATRAP CPT LEBIT THe-TRAP ISOLTRAP FSU Q-values of all important 0nbb – transitions are measured with sufficient accuracy Two resonantly enhanced 0n2EC – transitions are found
26
High Precision PTMS Q = Mmother- Mdaughter of b and bb transitions
< 10-10 type of neutrinos heavy sterile neutrinos < 10-11 neutrino mass
27
Determination of Neutrino Mass with an uncertainty of ~ 0.2 eV
KATRIN - Project b--decay of Tritium - Project EC in 163Ho HOLMES - Project MARE- Project b--decay of 187Re Measurements of Q-Values are required with a relative uncertainty (dQ/m) < 10-11
28
Max-Planck Institute for Nuclear Physics
THe-TRAP & PENTATRAP Max-Planck Institute for Nuclear Physics (Heidelberg) Division “Stored and Cooled Ions” THe-TRAP PENTATRAP Measurements of mass ratios of THe-TRAP PENTATRAP Tritium \ 3He 187Re \ 187Os 163Ho \ 163Dy with an accuracy of < 10-11
29
THe-TRAP for KATRIN: 3H3He Q-value
THe-Trap aims for dQ ≈ 20 meV dQ/m < 10-11 Status: Q = m(16O5+)-m(12C4+) dQ/m ≈ 10-10 Q= (1.2) eV S. Streubel et al., Appl. Phys. B 114, 137 (2014) Sz. Nagy et al., Euro. Phys. Lett. 74, 404 (2006)
30
PENTATRAP for ECHo, HOLMES, MARE
Measurements of Q-Values of b--decay of 187Re EC in 163Ho Intensity De-Excitation Energy / keV Q=2.47 keV Q=2.55 keV with an uncertainty of ~ 1 eV
31
Status of PENTATRAP Production of highly charged ions (187Re50+, Xe25+, Ar8+) Transport of HCIs to Penning-trap mass spectrometer Trapping of HCIs for up to 30 min. Measurement of the axial-motion frequency
32
Improvement of the Experiment Performence
Status of PENTATRAP Improvement of the Experiment Performence
33
Q-values of 187Re b-decay & 163Ho EC
(NEAR) FUTURE Q-values of 187Re b-decay & 163Ho EC with ~ 1 eV uncertainty
34
search for the best b-transition for the neutrino mass determination
EC in 163Ho; Q-value ≈ 2.55 keV b-decay of 3H; Q-value ≈ 18.6 keV b-decay of 187Re; Q-value ≈ 2.47 keV
35
search for the best b-transition for the neutrino mass determination
Electron-Capture Transitions Intensity De-Excitation Energy / keV Q-Belectron → 0 Q-value → 0
36
search for the best EC-transition for the neutrino mass determination
Measurement program for ISOLTRAP and JYFLTRAP
37
search for most suitable
Penning Traps for Neutrino Mass JYFLTRAP ISOLTRAP accuracy ~ 10-8 search for most suitable EC-transitions M(187Re)-M(187Os) THe-TRAP PENTATRAP M(3H)-M(3He) M(163Ho)-M(163Dy) accuracy < 10-11
38
High Precision PTMS Q = Mmother- Mdaughter of b and bb transitions
< 10-10 type of neutrinos heavy sterile neutrinos < 10-11 neutrino mass
39
Extension of Standard Model:
heavy sterile neutrinos: 1 to 100 keV overview of different approaches F. Bezrukov and M. Shaposhnikov, Phys. Rev. D 75 (2007) KATRIN and MARE (b-decay) H.J. de Vega, O. Moreno et al., Nucl. Phys. B 866 (2013) 177 search in electron capture (EC) F.X. Hartmann, Phys. Rev. C 45 (1992) 900
40
Extension of Standard Model:
heavy sterile neutrinos: 1 to 100 keV overview of different approaches F. Bezrukov and M. Shaposhnikov, Phys. Rev. D 75 (2007) KATRIN and MARE (b-decay) H.J. de Vega, O. Moreno et al., Nucl. Phys. B 866 (2013) 177 search in electron capture (EC) F.X. Hartmann, Phys. Rev. C 45 (1992) 900
41
= lM1 lM1 lN1 lN1 heavy sterile neutrinos in electron capture
Intensity De-Excitation Energy / keV calorimetric spectrum A(Z,N) + e A(Z-1,N)h + ne A(Z-1,N) + Ec lM1 lM1 = Function(Q-value, Ue4) lN1 lN1 3 active neutrinos exp
42
Measurements of Q-values of most suitable EC-transitions
P.E. Filianin et al., ArXiv: largest sensitivity to Ue4 around m4 ≈ Q - Bi contribution of n4 to i-capture only if m4 ≤ Q - Bi nuclide half-life Q / keV Bi / keV Bj / keV Q-Bi / keV 163Ho 4570 y 2.555(16) M1: (5) N1: (5) 0.51 235Np 396 d 124.2(9) K: (16) L1: (3) 8.6 157Tb 71 y 60.04(30) K: (5) L1: (5) 9.76 123Te 1017 y 52.7(16) K: (3) L1: (3) 22.2 202Pb 52 ky 46(14) L1: (4) M1: (4) 30.7 205Pb 13 My 50.6(5) 35.3 179Ta 1.82 y 105.6(4) K: (6) L1: (4) 40.2 193Pt 50 y 56.63(30) L1: (3) M1: 3.137(17) 43.2
43
105 cryogenic microcalorimeters 10 decays/s in each detector
Measurement time of 1 year dQ=0, wave functions are known precisely Ue4 2 m4 / (Q - Bi)
44
measurements of Q-values with
m4 / keV Ue4 2 measurements of Q-values with uncertainties dQ/m < are reqiured measurement programme for PENTATRAP
45
High Precision PTMS Q = Mmother- Mdaughter of b and bb transitions
completed far future type of neutrinos heavy sterile neutrinos near future neutrino mass
46
Thank you for your attention !
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.