Download presentation
Presentation is loading. Please wait.
Published byParis Dunston Modified over 9 years ago
1
Tangents to Circles Pg 595
2
Circle the set of all points equidistant from a given point ▫Center Congruent Circles ▫have the same radius “Circle P” or ○ P
3
Radius, r the distance from the center to a point on the circle a segment whose endpoints are the center of the circle and a point on the circle all radii of a circle are congruent
4
Diameter, d the distance across the circle, through the center a chord that passes through the center of the circle twice the radius (r), so d = 2r
5
Segments in a circle Chord ▫a segment whose endpoints are on the circle Secant ▫a line that intersects a circle in two points Tangent ▫a line in the plane of a circle that intersects the circle in exactly one point ▫Point of tangency – where the line intersects the circle
7
Name the segments Diameter ▫AD Radius ▫AC or CD Tangent ▫EG Chord ▫BH
8
Intersection of Circles 2 points 1 point ▫Internally tangent ▫Externally tangent None ▫Concentric
9
Internal Tangents
10
External Tangents
11
Theorem 10.1 If a line is tangent to a circle, then it is perpendicular to the radius drawn from the point of tangency.
12
Theorem 10.2 In a plane, if a line is perpendicular to a radius of a circle at its endpoint on the circle, then the line is tangent to the circle.
13
Is EF tangent to Circle D? 10.2 - EF is a tangent if EF ┴ DE Converse of the Pythagorean theorem: 11 2 + 60 2 = 61 2 3721 = 3721 DEF Right Triangle EF ┴ DE thus EF is a tangent
14
Theorem 10.3 If two segments from the same exterior point are tangent to a circle, then they are congruent.
15
Find x Because segment AB and BC are external tangents, they are congruent. So: 4x-9=2x+5 2x = 14 x = 7
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.