Download presentation
Published byDarlene Kittrell Modified over 9 years ago
1
-Artificial Neural Network- Chapter 2 Basic Model
朝陽科技大學 資訊管理系 李麗華 教授
2
Introduction to ANN Basic Model
Input layer Hidden layer Output layer Weights Processing Element(PE) Learning Recalling Energy function 朝陽科技大學 李麗華 教授
3
ANN Components (1/4) Input layer:[X1,X2,…..Xn]t , where t means vector transpose. Hidden layer: I j => net j => Y j Output layer:Yj Three ways of generating output: normalized, competitive output, competitive learning Weights :Wij means the connection value between layers Wij Y ‧ X1 X2 Xn Yj Y1 朝陽科技大學 李麗華 教授
4
ANN Components (2/4) 5. Processing Element(PE)
(A)Summation Function: (supervised) or (unsupervised) (B)Activity Function: or or (C)Transfer Function: Discrete type Linear type Non-linear type 朝陽科技大學 李麗華 教授
5
ANN Components (3/4) 6. Learning: 7. Recalling:
Based on the ANN model used, learning is to adjust weights to accommodate a set of training pattern in the network. 7. Recalling: Based on the ANN model used, recalling is to apply the real data pattern to the trained network so that the outputs are generated and examined. 朝陽科技大學 李麗華 教授
6
ANN Components (4/4) 8. Energy function:
Energy function is a verification function which determines if the network energy has converged to its minimum. Whenever the energy function approaches to zero, the network approaches to its optimum solution. 朝陽科技大學 李麗華 教授
7
Transfer Functions (1/3)
Discrete type transfer function: 1 -1 net j > 0 Step function or perceptron fc. Yj= if net j <=0 1 -1 Hopfield-Tank fc. net j > 0 net j<0 if Ynj= Yn-1j netj=0 1 -1 net j<=0 net j > 0 if Yj = Signum fc. 朝陽科技大學 李麗華 教授
8
Transfer Functions (2/3)
Discrete type transfer function: 1 -1 net j > 0 net j<0 if Yj = netj = 0 Signum0 fc. 1 -1 net j > 0 net j<0 if Ynj = net j = 0 Yn-1j BAM fc. 朝陽科技大學 李麗華 教授
9
Transfer Functions (3/3)
Linear type: Nonlinear type transfer function: Yj = net j net j net j > 0 Yj = if net j <=0 Yj = Sigmoid function Yj = Hyperbolic Tangent function 朝陽科技大學 李麗華 教授
10
Energy function (a) The energy function for supervised network learning: E = where E is the energy value ΔW= this is the value for adjusting weight Wij (b) The energy function for unsupervised network learning: E = ΔW= this is the value for adjusting weight Wij 朝陽科技大學 李麗華 教授
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.